Syntheses and pharmacological characterization of achiral and chiral enantiopure $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$-analogous derivatives of the muscarinic antagonist cycrimine: a study on $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ bioisosterism

Reinhold Tacke ${ }^{\text {a,* }}$, Thomas Kornek ${ }^{\text {a }}$, Tilman Heinrich ${ }^{\text {a }}$, Christian Burschka ${ }^{\text {a }}$, Martin Penka ${ }^{\text {a }}$, Melanie Pülm ${ }^{\text {a }}$, Christine Keim ${ }^{\text {b }}$, Ernst Mutschler ${ }^{\text {b }}$, Günter Lambrecht ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
${ }^{\text {b }}$ Pharmakologisches Institut für Naturwissenschaftler, Biozentrum Niederursel, Universität Frankfurt, Marie-Curie-Straße 9, Geb. N 260, D-60439 Frankfurt, Germany

Received 11 June 2001; accepted 28 July 2001
Dedicated to Professor M.G. Voronkov on the occasion of his 80th birthday

Abstract

The $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}-$ analogous compounds $\mathrm{rac}-\mathrm{Ph}\left(c-\mathrm{C}_{5} \mathrm{H}_{9}\right) \mathrm{El}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NR}_{2}\left(\mathrm{NR}_{2}=\right.$ piperidino; $\mathrm{El}=\mathrm{C}, r a c-3 a ; \mathrm{El}=\mathrm{Si}, r a c-$ $\mathbf{3 b} ; \mathrm{El}=\mathrm{Ge}, \mathrm{rac}-\mathbf{3 c})$ and $\left(c-\mathrm{C}_{5} \mathrm{H}_{9}\right)_{2} \mathrm{El}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NR}_{2}\left(\mathrm{NR}_{2}=\right.$ piperidino; $\left.\mathrm{El}=\mathrm{C}, \mathbf{5 a} ; \mathrm{El}=\mathrm{Si}, \mathbf{5 b} ; \mathrm{El}=\mathrm{Ge}, \mathbf{5 c}\right)$ were prepared in multi-step syntheses. The (R) - and (S)-enantiomers of $3 \mathbf{a}-\mathbf{c}$ were obtained by resolution of the respective racemates using the antipodes of O, O^{\prime}-dibenzoyltartaric acid (resolution of rac-3a), O, O^{\prime}-di-p-toluoyltartaric acid (resolution of rac-3b), or $1,1^{\prime}$-bi-naphthyl-2, 2^{\prime}-diyl hydrogen phosphate (resolution of rac-3c). The enantiomeric purities of (R)-3a-c and (S)-3a-c were $\geq 98 \%$ ee (determined by ${ }^{1} \mathrm{H}$-NMR spectroscopy using a chiral solvating agent). Reaction of rac-3a-c, $(R)-\mathbf{3 a}-\mathbf{c}$, (S)-3a-c and $\mathbf{5 a - c}$ with methyl iodide gave the corresponding methylammonium iodides rac-4a-c, $(R)-\mathbf{- 4 a - c},(S)-\mathbf{4 a}-\mathbf{c}$, and $\mathbf{6 a - c}(\mathbf{3 a}-\mathbf{c} \rightarrow \mathbf{4 a}-\mathbf{c}$; $\mathbf{5 a - c} \rightarrow \mathbf{6 a}-\mathbf{c}$). The absolute configuration of (S)-3a was determined by a single-crystal X-ray diffraction analysis of its $(R, R)-O, O^{\prime}$-dibenzoyltartrate. The absolute configurations of the silicon analog $(R)-4 \mathbf{b}$ and germanium analog $(R)-4 \mathbf{c}$ were also determined by single-crystal X-ray diffraction. The chiroptical properties of the (R) - and (S)-enantiomers of $\mathbf{3 a - c}, \mathbf{3 a}-\mathbf{c} \cdot \mathrm{HCl}$, and $\mathbf{4 a - c}$ were studied by ORD measurements. In addition, the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $(R)-\mathbf{3 a - c},(S)-\mathbf{3 a}-\mathbf{c},(R)-\mathbf{4 a}-\mathbf{c},(S)-\mathbf{4 a}-\mathbf{c}, \mathbf{5 a}-\mathbf{c}$, and $\mathbf{6 a - c}$ were studied for their affinities at recombinant human muscarinic $M_{1}, M_{2}, M_{3}, M_{4}$, and M_{5} receptors stably expressed in CHO-K1 cells (radioligand binding experiments with $\left[{ }^{3} \mathrm{H}\right] N$-methylscopolamine as the radioligand). For reasons of comparison, the known $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathrm{Ph}_{2} \mathrm{El}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NR}_{2}\left(\mathrm{NR}_{2}=\right.$ piperidino; $\left.\mathrm{El}=\mathrm{C}, 7 \mathrm{a} ; \mathrm{El}=\mathrm{Si}, 7 \mathbf{b} ; \mathrm{El}=\mathrm{Ge}, 7 \mathrm{c}\right)$ and the corresponding methylammonium iodides $\mathbf{8 a - c}$ were included in these studies. According to these experiments, all the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs behaved as simple competitive antagonists at $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors. The receptor subtype affinities of the individual carbon, silicon, and germanium analogs $\mathbf{3 a - 8 a}, \mathbf{3 b}-\mathbf{8 b}$, and $\mathbf{3 c}-\mathbf{8 c}$ were similar, indicating a strongly pronounced $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ bioisosterism. The (R)-enantiomers (eutomers) of $\mathbf{3 a}-\mathbf{c}$ and $\mathbf{4 a}-\mathbf{c}$ exhibited higher affinities (up to 22.4 fold) for $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors than their corresponding (S)-antipodes (distomers), the stereoselectivity ratios being higher at $\mathrm{M}_{1}, \mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} than at M_{2} receptors, and higher for the methylammonium compounds ($\mathbf{4 a - c}$) than for the amines ($\mathbf{3 a - c}$). With a few exceptions, compounds $\mathbf{5 a - c}$, $\mathbf{6 a - c}, \mathbf{7 a}-\mathbf{c}$, and $\mathbf{8 a - c}$ displayed lower affinities for $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors than the related (R)-enantiomers of $\mathbf{3 a - c}$ and $\mathbf{4 a}-\mathbf{c}$. The stereoselective interaction of the enantiomers of $\mathbf{3 a - c}$ and $\mathbf{4 a - c}$ with $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors is best explained in terms of opposite binding of the phenyl and cyclopentyl ring of the (R) - and (S)-enantiomers. The highest receptor subtype selectivity was observed for the germanium compound (R)-4c at $\mathrm{M}_{1} / \mathrm{M}_{2}$ receptors (12.9-fold). © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Silicon; Germanium; C/Si/Ge bioisosterism; Chirality; Muscarinic antagonists; ORD

[^0]
1. Introduction

Some years ago, we reported on the syntheses and antimuscarinic properties of the (R) - and (S)-enantiomers of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{1 a - c}$ and $\mathbf{2 a - c}$ [1-4]. These compounds are structurally related to the muscarinic antagonist trihexyphenidyl. We have now succeeded in synthesizing the respective cycrimine derivatives, the enantiopure $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $(R)-\mathbf{3 a}-\mathbf{c}$, $(S)-\mathbf{3 a}-\mathbf{c},(R)-\mathbf{4 a}-\mathbf{c}$, and $(S)-\mathbf{4 a}-\mathbf{c}$. In addition, the related achiral compounds $5 \mathbf{5 a}-\mathbf{c}$ and $\mathbf{6 a - c}$ were also prepared. The (R) - and (S)-enantiomers of $\mathbf{3 a}-\mathbf{c}$ and $4 \mathbf{a}-\mathbf{c}$ and compounds $5 \mathbf{5}-\mathbf{c}$ and $\mathbf{6 a - c}$ were tested for their affinities at recombinant human muscarinic M_{1}, M_{2}, M_{3}, M_{4}, and M_{5} receptors [5]. For comparison, the known achiral derivatives $7 \mathbf{7 a}-\mathbf{c}$ and $\mathbf{8 a - c}$ [3,6,7] were included in these studies. Further, the chiroptical properties of the antipodes of $\mathbf{3 a}-\mathbf{c}, \mathbf{3 a}-\mathbf{c} \cdot \mathrm{HCl}$, and $\mathbf{4 a}-\mathbf{c}$ were studied by ORD measurements.

The aim of the studies presented here was: (i) to contribute to the chemistry (stereochemistry) of centrochiral silanes and germanes; (ii) to obtain more information about the stereoselectivity of muscarinic receptor binding; and (iii) to extend our systematic
studies on $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ bioisosterism [8,9]. Preliminary results of these investigations have already been published elsewhere [8].

2. Results and discussion

2.1. Syntheses

The synthesis of compounds (R)-3a-c, (S)-3a-c, $(R)-\mathbf{4 a - c}$, and $(S)-\mathbf{4 a - c}$ is based on the preparation and resolution of the racemates rac-3a-c and subsequent transformation of the respective enantiopure amines into the corresponding methylammonium iodides.

The racemic compounds rac-3a and rac-4a were prepared by a four-step (five-step) synthesis, starting from phenylacetonitrile (9) (Scheme 1). Deprotonation of 9 with NaNH_{2} and subsequent alkylation with cyclopentyl bromide in diethyl ether gave rac-10, which on deprotonation with NaNH_{2} and subsequent treatment with 1-(2-chloroethyl)piperidine (generated in situ from its hydrochloride by reaction with NaNH_{2}) in toluene yielded rac-11. Hydrolysis of rac-11 in a mixture of glacial acetic acid, concentrated sulfuric acid, and water led, after workup with aqueous KOH solution, to rac-12, which was then converted into rac-3a by reaction with lithium aluminum hydride in THF and subsequent hydrolysis with hydrochloric acid. Treatment of rac-3a with saturated ethereal HCl solution gave the corresponding hydrochloride rac-3a $\cdot \mathrm{HCl}$. The quaternary ammonium derivative rac-4a was obtained by the reaction of rac-3a with methyl iodide in acetone.

The achiral compound $\mathbf{5 a}$ was obtained by a fourstep synthesis, starting from 4-bromobutyric acid ethyl ester (13) (Scheme 2) [10]. Reaction of 13 with piperidine in toluene gave 14, which was treated with lithium diisopropylamide in THF in the presence of HMPTA, followed by alkylation with cyclopentyl bromide to give rac-15. Deprotonation of rac-15 and subsequent alkylation with cyclopentyl bromide under the same reaction conditions led to $\mathbf{1 6}$, which upon

Scheme 1.

Scheme 2.

Scheme 3.
reduction with lithium aluminum hydride in THF, followed by hydrolysis with hydrochloric acid, gave $\mathbf{5 a}$. Treatment of 5 a with saturated ethereal HCl solution gave the hydrochloride $\mathbf{5 a} \cdot \mathrm{HCl}$, and reaction with methyl iodide in acetone afforded the quaternary ammonium derivative $\mathbf{6 a}$.

The syntheses of the silicon and germanium compounds rac-3b and rac-3c are quite similar, but differ significantly from that of the carbon analog rac-3a. Compounds rac-3b and rac-3c were prepared by sevenstep syntheses, starting from (chloromethyl)trimethoxysilane (17) and trichloro(chloromethyl)germane (24), respectively (Scheme 3).

For the preparation of the silane rac-3b, $\mathbf{1 7}$ was treated with one molar equivalent of cyclopentylmagnesium chloride in diethyl ether to give 18, which was then treated with one molar equivalent of phenylmagnesium chloride in THF to afford rac-19. Subsequent reaction of rac- 19 with vinylmagnesium chloride in toluene led to rac-20, which upon treatment with sodium acetate in DMF gave rac-21. Reduction of rac-21 with lithium aluminum hydride in diethyl ether, followed by hydrolysis with hydrochloric acid, afforded
rac-22. For the following hydroamination step, the OH group of rac-22 was protected by silylation with chlorotrimethylsilane in n-pentane in the presence of triethylamine to give rac-23. Reaction of rac-23 with piperidine in THF in the presence of 1-lithiopiperidine, followed by hydrolysis with hydrochloric acid, finally yielded rac-3b. Treatment of rac-3b with saturated ethereal HCl solution gave the hydrochloride rac$\mathbf{3 b} \cdot \mathrm{HCl}$, and reaction of rac-3b with methyl iodide in acetone afforded the quaternary ammonium iodide rac4b.

For the synthesis of the germane rac-3c, 24 was treated with one molar equivalent of cyclopentylmagnesium chloride in diethyl ether to give $\mathbf{2 5}$, which upon treatment with one molar equivalent of phenylmagnesium chloride in diethyl ether afforded rac-26. Subsequent reaction of $\mathrm{rac}-\mathbf{2 6}$ with vinylmagnesium chloride in toluene led to rac-27, which was treated with sodium acetate in DMF to give rac-28. Reaction of rac-28 with lithium aluminum hydride in diethyl ether, followed by hydrolysis with hydrochloric acid, afforded rac-29, which was silylated with chlorotrimethylsilane in n-pentane in the presence of triethylamine to give rac-30.

Hydroamination of rac-30 with piperidine in THF in the presence of 1 -lithiopiperidine and subsequent hydrolysis with hydrochloric acid finally gave rac-3c. Treatment of rac-3c with saturated ethereal HCl solution afforded the hydrochloride rac- $\mathbf{3 c} \cdot \mathrm{HCl}$, and reaction of rac-3c with methyl iodide in acetone led to the quaternary ammonium iodide rac-4c.

The achiral silane $\mathbf{5 b}$ was prepared by a seven-step synthesis, starting from dicylcopentyldimethoxysilane (31) (Scheme 4). Reaction of 31 with one molar equivalent of vinylmagnesium chloride in THF led to 32, which upon treatment with thionyl chloride gave 33. Reaction of 33 with $\mathrm{LiCH}_{2} \mathrm{Cl}$ (generated in situ from methyllithium and bromochloromethane) in THF afforded 34. Treatment of 34 with sodium acetate in DMF led to 35, which was reduced with lithium aluminum hydride in diethyl ether, followed by hydrolysis with hydrochloric acid to give 36. Silylation of 36 with chlorotrimethylsilane in n-pentane in the presence of triethylamine afforded 37, which upon treatment with piperidine in THF in the presence of 1-lithiopiperidine and subsequent hydrolysis with hydrochloric acid finally gave $\mathbf{5 b}$. The hydrochloride $\mathbf{5 b} \cdot \mathrm{HCl}$ was obtained by treatment of $\mathbf{5 b}$ with saturated ethereal HCl solution, and the quaternary ammonium iodide $\mathbf{6 b}$ was prepared by treatment of $\mathbf{5 b}$ with methyl iodide in acetone.

The achiral germane $\mathbf{5 c}$ was prepared by a six-step synthesis, starting from dichloro(chloromethyl)cyclopentylgermane (25) (Scheme 4). Treatment of 25 with
one molar equivalent of cyclopentylmagnesium chloride in THF gave 38, which upon reaction with vinylmagnesium chloride yielded 39. Treatment of 39 with sodium acetate in DMF led to $\mathbf{4 0}$, which was reduced with lithium aluminum hydride in diethyl ether, followed by hydrolysis with hydrochloric acid to afford 41. Silylation of 41 with chlorotrimethylsilane in n-pentane in the presence of triethylamine gave $\mathbf{4 2}$, which was treated with piperidine in the presence of 1-lithiopiperidine, followed by hydrolysis with hydrochloric acid to give finally $\mathbf{5 c}$. Treatment of $\mathbf{5 c}$ with saturated ethereal HCl solution afforded the hydrochloride $\mathbf{5 c} \cdot \mathrm{HCl}$, and the quaternary ammonium iodide $\mathbf{6 c}$ was obtained by treatment of $\mathbf{5 c}$ with methyl iodide in acetone.

The enantiomers (R)-3a and (S)-3a were obtained by resolution of rac-3a using the antipodes of O, O^{\prime}-dibenzoyltartaric acid as resolving agents (Scheme 5). Treatment of (R)-3a and (S)-3a with saturated ethereal HCl solution gave the respective hydrochlorides $(R)-\mathbf{3 a} \cdot \mathrm{HCl}$ and $(S) \mathbf{- 3 a} \cdot \mathrm{HCl}$, and reaction of $(R) \mathbf{- 3 a}$ and $(S) \mathbf{- 3 a}$ with methyl iodide in acetone afforded the respective quaternary ammonium iodides (R)-4a and (S)-4a.
The enantiomers (R)-3b and (S)-3b (primarily isolated as hydrochlorides and then transformed into the respective amines by treatment with aqueous NaOH solution) were obtained by resolution of rac-3b using the antipodes of O, O^{\prime}-di- p-toluoyltartaric acid as resolving agents (Scheme 5). Treatment of (R) -3b and (S)-3b with methyl iodide in acetone gave the corre-

34 (73\%), 39 (84%)

Scheme 4.

Resolution using $\mathrm{O}, \mathrm{O}^{\prime}$-dibenzoytartaric acid $(\mathrm{A}, \mathrm{El}=\mathrm{C}), \mathrm{O}, \mathrm{O}^{\prime}$-di-p-toluoyitartaric acid $(\mathrm{B}, \mathrm{El}=\mathrm{Si})$, or $1,1^{\prime}$-binaphthyl-2,2'-diyl hydrogen phosphate ($\mathrm{C}, \mathrm{El}=\mathrm{Ge}$)

Scheme 5.
sponding quaternary ammonium iodides (R)-4b and (S)-4b.

The enantiomers $(R)-3 \mathbf{c}$ and $(S)-\mathbf{3 c}$ were obtained by resolution of $\mathrm{rac}-\mathbf{3 c}$ using the antipodes of $1,1^{\prime}$-binaph-thyl-2,2'-diyl hydrogen phosphate as resolving agents (Scheme 5). Treatment of $(R)-\mathbf{3 c}$ and $(S)-\mathbf{3 c}$ with saturated ethereal HCl solution gave the respective hydrochlorides $(R)-\mathbf{3 c} \cdot \mathrm{HCl}$ and $(S)-\mathbf{3 c} \cdot \mathrm{HCl}$, and reaction of $(R)-3 \mathrm{c}$ and (S)-3c with methyl iodide in acetone afforded the respective quaternary ammonium iodides $(R)-4 \mathrm{c}$ and (S)-4c.

The identities of the hitherto unknown compounds described in this paper were established by elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) and NMR-spectroscopic studies. In addition, the $(R, R)-O, O^{\prime}$-dibenzoyltartrate of (S)-3a and the ammonium iodides $(R)-\mathbf{4 b}$ and $(R)-\mathbf{4 c}$ were structurally characterized by single-crystal X-ray diffraction studies.

2.2. Determination of the absolute configurations

The absolute configurations of the (R) - and (S)enantiomers of $\mathbf{3 a}-\mathbf{c}, \mathbf{3 a}-\mathbf{c} \cdot \mathrm{HCl}$, and $\mathbf{4 a - c}$ were established by crystal structure analyses of the (R, R)- O, O^{\prime}-dibenzoyltartrate of (S)-3a and the ammonium iodides $(R)-\mathbf{4 b}$ and $(R)-\mathbf{4 c}$. The crystal data and the experimental parameters used for these studies are given in Table 1. The crystal structures of the $\mathrm{Si} / \mathrm{Ge}$ analogs $(R)-\mathbf{4 b}$ and $(R)-\mathbf{4 c}$ are isotypic. Both compounds crystallize with two cations and two anions in the asymmetric unit. The structures of one of the two crystallographically independent cations each in the crystals of $2(S)-\mathbf{3 a} \cdot(R, R)-\mathrm{HOOC}-\mathrm{CHR}-\mathrm{CHR}-\mathrm{COOH}$ $(\mathrm{R}=\mathrm{O}-\mathrm{CO}-\mathrm{Ph}),(R)-4 \mathrm{~b}$, and $(R)-4 \mathrm{c}$ are shown in Figs. $1-3$. The bond distances and bond angles of all three compounds are in the expected range and therefore do

Fig. 1. Structure of one of the two crystallographically independent cations in the crystal of $(R, R)-O, O^{\prime}$-dibenzoyltartrate of (S)-3a [2(S)$\mathbf{3 a} \cdot(R, R)$ - $\mathrm{HOOC}-\mathrm{CHR}-\mathrm{CHR}-\mathrm{COOH} ; \mathrm{R}=\mathrm{O}-\mathrm{CO}-\mathrm{Ph}]$. The structure of the other cation (not shown) is very similar. The two cations and the anion are connected by two intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and two intermolecular $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen bonds.

Fig. 2. Structure of one of the two crystallographically independent cations in the crystal of compound $(R)-\mathbf{4 b}$. The structure of the other cation (not shown) is very similar.

Table 1
Crystal data and structure refinement parameters for $2(S)-\mathbf{3 a} \cdot(R, R)-\mathrm{dbta}^{\mathbf{a}},(R) \mathbf{- 4 b}$, and $(R)-\mathbf{4 c}$

	2(S)-3a dbta	(R)-4b	(R)-4c
Empirical formula	$\mathrm{C}_{58} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{10}$	$\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{INOSi}$	$\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{GeINO}$
Formula mass ($\mathrm{g} \mathrm{mol}^{-1}$)	961.21	459.47	503.97
Temperature (K)	193(2)	173(2)	173(2)
Wavelength (A)	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group (no.)	$P 22_{1} 2_{1} 2_{1}$ (19)	$P 2_{1} 2_{1} 2_{1}$ (19)	$P 22_{1} 2_{1}$ (19)
Unit cell dimensions			
$a(\mathrm{~A})$	11.4290(2)	8.9504(18)	9.0270(5)
b (\AA)	17.8345(3)	9.1231(18)	9.1659(7)
$c\left(\right.$ (${ }^{\text {a }}$	25.7597(5)	51.731(10)	51.441(4)
$V\left(\AA^{3}\right)$	5250.6(2)	4224.1(15)	4256.2(5)
Z	4	8	8
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.216	1.445	1.573
Absorption coefficient (mm^{-1})	0.082	1.580	2.897
$F(000)$	2072	1888	2032
Crystal size (mm)	$0.8 \times 0.3 \times 0.1$	$0.6 \times 0.4 \times 0.3$	$0.3 \times 0.2 \times 0.2$
2-Theta range for data collection (${ }^{\circ}$)	$3.90-46.38$	4.54-43.96	4.52-43.94
Index ranges	$\begin{aligned} & -12 \leq h \leq 12,0 \leq k \leq 19, \\ & 0 \leq l \leq 28 \end{aligned}$	$\begin{aligned} & -9 \leq h \leq 9, \quad-9 \leq k \leq 9, \\ & -54 \leq l \leq 54 \end{aligned}$	$\begin{aligned} & -9 \leq h \leq 9,-9 \leq k \leq 9, \\ & -42 \leq l \leq 54 \end{aligned}$
Reflections collected	36807	24413	15027
Independent reflections	$7469\left[R_{\text {int }}=0.0412\right]$	$5186\left[R_{\text {int }}=0.0697\right]$	5139 [$\left.R_{\text {int }}=0.0345\right]$
No. of reflections used	7469	5186	5139
Restraints	378	0	0
No. of parameters	713	437	438
Absorption correction	Semiempiric	-	-
$S^{\text {b }}$	1.135	1.072	1.032
Weight parameters $a / b^{\text {c }}$	0.0297/1.9878	0.0472/3.6805	0.0522/0.1831
Final R indices [$I>2 \sigma(I)$]	$R_{1}{ }^{\text {d }}=0.0418$	$R_{1}{ }^{\text {d }}=0.0355$	$R_{1}{ }^{\text {d }}=0.0257$
R indices (all data)	$w R_{2}{ }^{\text {e }}=0.0950$	$w R_{2}{ }^{\text {e }}=0.0780$	$w R_{2}{ }^{\text {e }}=0.0701$
Flack x parameter	1.4(9)	-0.05(2)	-0.012(12)
Largest difference peak and hole	+0.440 and -0.168	+0.742 and -0.920	+0.659 and -0.798

```
\({ }^{\mathrm{a}}(R, R)\)-dbta \(=(R, R)-\mathrm{HOOC}-\mathrm{CHR}-\mathrm{CHR}-\mathrm{COOH}(\mathrm{R}=\mathrm{O}-\mathrm{CO}-\mathrm{Ph})\).
\({ }^{\mathrm{b}} S=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /(n-p)\right\}^{0.5} ; n=\) number of reflections; \(p=\) number of parameters.
\({ }^{\mathrm{c}} w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(a P)^{2}+b P\), with \(P=\left[\max \left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right] / 3\).
\({ }^{\mathrm{d}} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|\).
\({ }^{\mathrm{e}} w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{0.5}\).
```


Fig. 3. Structure of one of the two crystallographically independent cations in the crystal of compound $(R)-\mathbf{4 c}$. The structure of the other cation (not shown) is very similar.
not need further comments. As can be seen from the respective torsion angles [11], the $\mathrm{El}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}$ $(\mathrm{El}=\mathrm{C}, \mathrm{Si}, \mathrm{Ge})$ moieties of all cations adopt an anticonformation. All piperidinio groups are characterized by a chair conformation, and all cyclopentyl rings adopt an envelope conformation.

As the conversions $\mathbf{3 a}-\mathbf{c} \rightarrow \mathbf{3 a}-\mathbf{c} \cdot \mathrm{HCl}$ and $\mathbf{3 a}-\mathbf{c} \rightarrow$ $4 \mathbf{a}-\mathbf{c}$ do not affect the absolute configurations at the central carbon, silicon, and germanium atoms, assignment of the absolute configurations of all compounds could be made on the basis of these three crystal structure analyses.

2.3. Determination of the enantiomeric purities

The enantiomeric purities of the (R) - and (S)-enantiomers of $\mathbf{3 a - c}$ were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ studies using the chiral solvating agent (R)-2,2,2-trifluoro-1-(9-
anthryl)ethanol. According to this method, the enantiomeric excess (ee) of the resolved enantiomers of $\mathbf{3 a}-\mathbf{c}$ was determined to be $\geq 98 \%$. As the conversions 3 a$\mathbf{c} \rightarrow \mathbf{3 a}-\mathbf{c} \cdot \mathrm{HCl}$ and $\mathbf{3 a}-\mathbf{c} \rightarrow \mathbf{4 a}-\mathbf{c}$ do not affect the respective centers of chirality, enantiomeric purities of $\geq 98 \%$ ee can also be assumed for the antipodes of $\mathbf{3 a}-\mathbf{c} \cdot \mathrm{HCl}$ and $\mathbf{4 a}-\mathbf{c}$.

2.4. ORD studies

The (R)- and (S)-enantiomers of $\mathbf{3 a - c}, \mathbf{3 a - c} \cdot \mathbf{H C l}$, and $\mathbf{4 a - c}$ were studied for their chiroptical properties. For this purpose, the ORD spectra of these compounds were measured using methanol as solvent (Figs. 4-6). As shown for the antipodes of $\mathbf{3 a - c}$ in Fig. 4, similar ORD spectra were obtained for the respective $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs with the same absolute configuration (\rightarrow identical signs for the optical rotations), the specific rotations of these compounds differing only in their absolute values. Analogous results were obtained for the (R) - and (S)-enantiomers of the hydrochlorides 3a$\mathbf{c} \cdot \mathrm{HCl}$ (Fig. 5). Surprisingly, quite a different behavior

Fig. 4. ORD spectra of the (R) - and (S)-enantiomers of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs 3a-c (solvent methanol; $c=10 \mathrm{mg} \mathrm{ml}^{-1}, d=10 \mathrm{~cm}, T=$ $20^{\circ} \mathrm{C}$).

Fig. 5. ORD spectra of the (R) - and (S)-enantiomers of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{3 a}-\mathbf{c} \cdot \mathrm{HCl}$ (solvent methanol; $c=10 \mathrm{mg} \mathrm{ml}^{-1}, d=10 \mathrm{~cm}$, $T=20^{\circ} \mathrm{C}$).

Fig. 6. ORD spectra of the (R) - and (S)-enantiomers of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $4 \mathbf{a}-\mathbf{c}$ (solvent methanol; $c=10 \mathrm{mg} \mathrm{ml}^{-1}, d=10 \mathrm{~cm}, T=$ $\left.20{ }^{\circ} \mathrm{C}\right) .$| $-(R)-\mathbf{3 a} \cdot \mathrm{HCl}$ | $----(R)-\mathbf{3 b} \cdot \mathrm{HCl}$ | $-\cdot-\cdot(R)-\mathbf{3 c} \cdot \mathrm{HCl}$ |
| :--- | :--- | :--- |
| $--(S)-\mathbf{3 a} \cdot \mathrm{HCl}$ | $\cdots \cdots(S)-\mathbf{3 b} \cdot \mathrm{HCl}$ | $-\cdots-\cdots(S)-\mathbf{3 c} \cdot \mathrm{HCl}$ |

Fig. 7. ORD spectra of the (R) - and (S)-enantiomers of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{3 a}-\mathbf{c} \cdot \mathrm{HCl}$ (solvent trichloromethane; $c=10 \mathrm{mg} \mathrm{ml}^{-1}, d=10$ $\mathrm{cm}, T=20^{\circ} \mathrm{C}$).
was observed for the antipodes of the methylammonium iodides $\mathbf{4 a - c}$, the sign for the optical rotation of the carbon compound $(R)-\mathbf{4 a}[(S)-4 a]$ differing from those of its silicon analog $(R)-\mathbf{4 b}[(S)-\mathbf{4 b}]$ and germanium analog $(R)-4 \mathbf{c}[(S)-4 \mathbf{c}]$ (Fig. 6). An analogous result was obtained for the (R) - and (S)-enantiomers of the hydrochlorides $3 \mathbf{a}-\mathbf{c} \cdot \mathrm{HCl}$ in trichloromethane: the sign for the optical rotation of the carbon compound $(R) \mathbf{- 3 a} \cdot \mathrm{HCl}[(S)-\mathbf{3 a} \cdot \mathrm{HCl}]$ differs from those of its silicon analog $(R) \mathbf{- 3 b} \cdot \mathrm{HCl}[(S) \mathbf{- 3 b} \cdot \mathrm{HCl}]$ and germanium analog $(R)-\mathbf{3 c} \cdot \mathrm{HCl}[(S)-\mathbf{3 c} \cdot \mathrm{HCl}]$ (Fig. 7). We do not have a satisfactory explanation for these surprising differences [12]; nevertheless, these different signs for the optical rotations within a series of identically configurated $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs clearly indicate that the assignment of absolute configuration via comparison of ORD data of chiral $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs is not admissible.

2.5. Pharmacological studies

The (R) - and (S)-enantiomers of $\mathbf{3 a}-\mathbf{c}$ and $\mathbf{4 a}-\mathbf{c}$ and the achiral compounds $5 \mathbf{a}-\mathbf{c}, \mathbf{6 a - c}, 7 \mathbf{a}-\mathbf{c}$, and $\mathbf{8 a}-\mathbf{c}$ were studied for their affinities ($\mathrm{p} K_{\mathrm{i}}$ values) at recombi-
nant human muscarinic $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} receptors stably expressed in CHO-K1 cells [binding studies with $\left[{ }^{3} \mathrm{H}\right] N$-methylscopolamine ($\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$) as the radioligand]. The results of these investigations are summarized in Tables 2-4 and illustrated in Figs. $8-13$.

$\mathrm{p} K_{\mathrm{i}}$ values

Fig. 8. Affinity profiles ($\mathrm{p} K_{\mathrm{i}}$ values) of the (R) - and (S)-enantiomers of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{3 a - c}$ at cloned human muscarinic $\mathrm{M}_{1}, \mathrm{M}_{2}$, $\mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} receptors.

Fig. 9. Affinity profiles ($\mathrm{p} K_{\mathrm{i}}$ values) of the (R) - and (S)-enantiomers of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{4 a - c}$ at cloned human muscarinic $\mathrm{M}_{1}, \mathrm{M}_{2}$, $\mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} receptors.

Fig. 10. Affinity profiles ($\mathrm{p} K_{\mathrm{i}}$ values) of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{5 a}-\mathbf{c}$ at cloned human muscarinic $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} receptors.

Fig. 11. Affinity profiles ($\mathrm{p} K_{\mathrm{i}}$ values) of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{6 a}-\mathbf{c}$ at cloned human muscarinic $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} receptors.

Fig. 12. Affinity profiles ($\mathrm{p} K_{\mathrm{i}}$ values) of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{7 a}-\mathbf{c}$ at cloned human muscarinic $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} receptors.

Fig. 13. Affinity profiles ($\mathrm{p} K_{\mathrm{i}}$ values) of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{8 a}-\mathbf{c}$ at cloned human muscarinic $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} receptors.

Table 2
Affinities ($\mathrm{p} K_{\mathrm{i}}$ values) for the (R) - and (S)-enantiomers of $\mathbf{3 a - c}$ and $\mathbf{4 a - c}$ and for the achiral compounds $\mathbf{5 a - c} \mathbf{c} \mathbf{6 a - c}, 7 \mathbf{7 a - c}$, and $\mathbf{8 a - c}$ obtained in radioligand binding studies at recombinant human muscarinic $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} receptors stably expressed in CHO-K1 cells ${ }^{\text {a }}$

Compound	$\begin{aligned} & \mathrm{p} K_{\mathrm{i}} \text { values } \\ & \mathrm{M}_{1} \end{aligned}$	M_{2}	M_{3}	M_{4}	M_{5}
(R)-3a	8.25 ± 0.02	7.22 ± 0.08	7.67 ± 0.03	7.83 ± 0.03	7.47 ± 0.03
(S)-3a	7.58 ± 0.03	7.15 ± 0.01	6.74 ± 0.01	7.07 ± 0.01	6.84 ± 0.02
(R)-3b	7.81 ± 0.05	6.95 ± 0.08	7.21 ± 0.01	7.36 ± 0.07	7.03 ± 0.02
$(S)-\mathbf{3 b}$	7.02 ± 0.19	6.57 ± 0.18	6.22 ± 0.16	6.53 ± 0.20	6.40 ± 0.18
(R)-3c	7.53 ± 0.02	6.78 ± 0.03	6.90 ± 0.04	7.06 ± 0.03	6.79 ± 0.05
(S)-3c	6.92 ± 0.03	6.62 ± 0.08	6.19 ± 0.03	6.43 ± 0.03	6.46 ± 0.01
(R)-4a	8.99 ± 0.03	8.01 ± 0.05	8.34 ± 0.02	8.59 ± 0.03	8.31 ± 0.05
(S)-4a	7.70 ± 0.06	7.65 ± 0.08	6.99 ± 0.09	7.40 ± 0.09	7.23 ± 0.01
(R) $\mathbf{- 4} \mathbf{b}$	9.12 ± 0.04	8.05 ± 0.06	8.25 ± 0.06	8.53 ± 0.05	8.35 ± 0.04
$(S)-\mathbf{4 b}$	7.98 ± 0.03	7.52 ± 0.02	7.03 ± 0.09	7.51 ± 0.08	7.37 ± 0.07
(R)-4c	9.22 ± 0.04	8.11 ± 0.03	8.23 ± 0.04	8.63 ± 0.05	8.40 ± 0.03
(S)-4c	7.94 ± 0.02	7.51 ± 0.02	6.98 ± 0.06	7.40 ± 0.02	7.38 ± 0.02
5a	7.94 ± 0.11	7.37 ± 0.03	7.65 ± 0.04	7.79 ± 0.03	7.56 ± 0.04
5b	7.89 ± 0.01	7.16 ± 0.03	7.30 ± 0.02	7.50 ± 0.02	7.24 ± 0.01
5c	7.79 ± 0.03	7.19 ± 0.02	7.21 ± 0.03	7.37 ± 0.02	7.17 ± 0.03
6a	8.73 ± 0.06	8.17 ± 0.07	8.46 ± 0.07	8.56 ± 0.11	8.31 ± 0.05
6b	8.70 ± 0.05	8.12 ± 0.04	8.17 ± 0.05	8.46 ± 0.05	8.24 ± 0.08
6c	8.53 ± 0.04	8.00 ± 0.06	8.03 ± 0.06	8.28 ± 0.10	8.15 ± 0.01
7a	7.15 ± 0.10	6.63 ± 0.06	6.53 ± 0.10	6.89 ± 0.05	6.38 ± 0.05
7b	7.00 ± 0.03	6.43 ± 0.06	6.20 ± 0.07	6.51 ± 0.03	6.29 ± 0.04
7c	6.94 ± 0.05	6.41 ± 0.07	6.03 ± 0.04	6.35 ± 0.03	6.18 ± 0.03
8a	7.84 ± 0.07	7.48 ± 0.02	7.20 ± 0.02	7.58 ± 0.06	7.11 ± 0.03
8b	8.49 ± 0.03	7.70 ± 0.05	7.51 ± 0.04	7.81 ± 0.05	7.61 ± 0.03
8c	8.42 ± 0.06	7.62 ± 0.02	7.39 ± 0.04	7.73 ± 0.06	7.56 ± 0.03

${ }^{\mathrm{a}}$ Data are presented as means $\pm \mathrm{SD}$ of at least three experiments performed in duplicate.

The Hill coefficients ($0.89 \pm 0.09-1.10 \pm 0.19$) of all saturation and competition curves were not significantly different from unity, indicating the presence of a single recombinant muscarinic receptor subtype (M_{1}, $\mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, or M_{5}) in the five CHO-K1 cell lines, and a competitive antagonism by compounds $\mathbf{3 a - c}, \mathbf{4 a - c}$, $\mathbf{5 a - c}, \mathbf{6 a - c}, 7 \mathbf{a}-\mathbf{c}$, and $\mathbf{8 a - c}$ at $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors. It is interesting to note that the binding affinities of the diphenyl compounds $7 \mathbf{a}-\mathbf{c}$ and $8 \mathbf{a}-\mathbf{c}$ obtained in the present study at cloned human $\mathrm{M}_{1}-\mathrm{M}_{4}$ receptors (Table 2) were found to be very similar to those obtained in binding studies at native muscarinic receptors present in human NB-OK1 neuroblastoma cells $\left(M_{1}\right)$, rat heart $\left(M_{2}\right)$, rat pancreas $\left(M_{3}\right)$, and rat striatum $\left(\mathrm{M}_{4}\right)$ [3,4; and unpublished results].

The affinities of compounds $\mathbf{3 a - c}, \mathbf{4 a - c}, \mathbf{5 a}-\mathbf{c}, \mathbf{6 a}-\mathbf{c}$, $7 \mathbf{a}-\mathbf{c}$, and $\mathbf{8 a - c}$ for the different muscarinic receptor subtypes were found to be controlled by the following structural parameters: (i) the nature of the central atom 'El' (C, Si, or Ge); (ii) the nature of the ring substituent at 'El' (phenyl/cyclopentyl, phenyl/phenyl, or cyclopentyl/cyclopentyl; (iii) the structure of the cationic head [tertiary amino group (protonated under physiological conditions) or quaternary ammonium moiety]; and (iv) the absolute configuration in the case of chiral compounds $\mathbf{3 a}-\mathbf{c}$ and $\mathbf{4 a}-\mathbf{c}$.

In most cases, the muscarinic receptor affinities for the individual carbon ($\mathbf{3 a}-\mathbf{8 a}$), silicon ($\mathbf{3 b}-\mathbf{8 b}$), and germanium analogs ($\mathbf{3 c}-8 \mathbf{c}$) were found to be very similar, displaying a strongly pronounced $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ bioisosterism. The greatest differences in affinity (C vs. Si vs. Ge analogs) were observed for the enantiomers of 3a-c ($\mathrm{C} \geq \mathrm{Si} \geq \mathrm{Ge}$, up to 5.2 -fold) (Fig. 8).
N-Methylation increased the affinities for $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors, this increase being consistently lower among the carbon compounds ($\mathbf{3 a}, \mathbf{5 a}, \mathbf{7 a} \rightarrow \mathbf{4 a}, \mathbf{6 a}, \mathbf{8 a}$) than among the silicon ($\mathbf{3 b}, \mathbf{5 b}, \mathbf{7 b} \rightarrow \mathbf{4 b}, \mathbf{6 b}, \mathbf{8 b}$) and germanium compounds ($\mathbf{3 c}, \mathbf{5 c}, \mathbf{7 c} \rightarrow \mathbf{4 c}, \mathbf{6 c}, \mathbf{8 c}$) and amounting to 49 -fold for $(R)-3 \mathbf{c} \rightarrow(R)-\mathbf{4 c}$ at M_{1} receptors.

In general, the (R)-enantiomers (eutomers) of 3a-c and $\mathbf{4 a - c}$ exhibited higher affinities at all muscarinic receptor subtypes than the corresponding (S)-enantiomers (distomers). However, this stereoselectivity [up to 22.4 -fold; $(R)-\mathbf{4 a} /(S)-\mathbf{4 a}$ at M_{3} receptors, Fig. 9] was not the same for all receptor subtypes $\left(M_{3} \geq M_{1} \geq\right.$ $\mathrm{M}_{4} \geq \mathrm{M}_{5}>\mathrm{M}_{2}$), being lower for the tertiary amines ($\mathbf{3 a}-\mathbf{c}, 1.2-$ to 9.8 -fold) than for the corresponding quaternary ammonium derivatives $(\mathbf{4 a - c}, 2.3$ - to 22.4-fold) (Table 4). Notably, there were no significant differences between the stereoselectivity ratios (eudismic indices; Table 4) of the individual (R)- and

Table 3
Pharmacological selectivity ratios for the (R) - and (S)-enantiomers of $\mathbf{3 a - c}$ and $\mathbf{4 a - c}$ and for the achiral compounds $5 \mathbf{a}-\mathbf{c}, \mathbf{6 a - c}, 7 \mathbf{a}-\mathbf{c}$, and $\mathbf{8 a - c}$

Compound	Selectivity ratios ${ }^{\text {a }}$									
	$\mathrm{M}_{1} / \mathrm{M}_{2}$	$\mathrm{M}_{1} / \mathrm{M}_{3}$	$\mathrm{M}_{1} / \mathrm{M}_{4}$	$\mathrm{M}_{1} / \mathrm{M}_{5}$	$\mathrm{M}_{2} / \mathrm{M}_{3}$	$\mathrm{M}_{2} / \mathrm{M}_{4}$	$\mathrm{M}_{2} / \mathrm{M}_{5}$	$\mathrm{M}_{3} / \mathrm{M}_{4}$	$\mathrm{M}_{3} / \mathrm{M}_{5}$	$\mathrm{M}_{4} / \mathrm{M}_{5}$
(R)-3a	10.7	3.8	2.6	6.0	0.4	0.2	0.6	0.7	1.6	2.3
(S)-3a	2.7	6.9	3.2	5.5	2.6	1.2	2.0	0.5	0.8	1.7
(R)-3b	7.2	4.0	2.8	6.0	0.5	0.4	0.8	0.7	1.5	2.1
$(S)-\mathbf{3 b}$	2.9	6.3	3.1	4.2	2.2	1.1	1.4	0.5	0.7	1.3
(R)-3c	5.6	4.3	3.0	5.5	0.8	0.5	1.0	0.7	1.3	1.9
(S)-3c	2.0	5.4	3.1	2.9	2.7	1.5	1.4	0.6	0.5	0.9
(R)-4a	9.5	4.5	2.5	4.8	0.5	0.3	0.5	0.6	1.1	1.9
(S)-4a	1.1	5.1	2.0	3.0	4.6	1.8	2.6	0.4	0.6	1.5
(R)-4b	11.7	7.4	3.9	5.9	0.6	0.3	0.5	0.5	0.8	1.5
(S)-4b	2.9	8.9	3.0	4.1	3.1	1.0	1.4	0.3	0.5	1.4
(R)-4c	12.9	9.8	3.9	6.6	0.8	0.3	0.5	0.4	0.7	1.7
(S)-4c	2.7	9.1	3.5	3.6	3.4	1.3	1.3	0.4	0.4	1.0
5a	3.7	2.1	1.4	2.4	0.5	0.4	0.6	0.7	1.2	1.7
5b	5.4	3.9	2.5	4.5	0.7	0.5	0.8	0.6	1.1	1.8
5c	4.0	3.8	2.6	4.2	1.0	0.7	1.0	0.7	1.1	1.6
6a	3.6	1.9	1.5	2.6	0.5	0.4	0.7	0.8	1.4	1.8
6b	3.8	3.4	1.7	2.9	0.9	0.5	0.8	0.5	0.9	1.7
6c	3.4	3.2	1.8	2.4	0.9	0.5	0.7	0.6	0.8	1.3
7 a	3.3	4.2	1.8	5.9	1.3	0.5	1.8	0.4	1.4	3.2
7b	3.7	6.3	3.1	5.1	1.7	0.8	1.4	0.5	0.8	1.7
7c	3.4	8.1	3.9	5.8	2.4	1.1	1.7	0.5	0.7	1.5
8a	2.3	4.4	1.8	5.4	1.9	0.8	2.3	0.4	1.2	3.0
8b	6.2	9.5	4.8	7.6	1.5	0.8	1.2	0.5	0.8	1.6
8c	6.3	10.7	4.9	7.2	1.7	0.8	1.1	0.5	0.7	1.5

${ }^{\text {a }} K_{\mathrm{i}}$ ratios $\left(\mathrm{p} K_{\mathrm{i}}=-\log K_{\mathrm{i}}\right)$ are given as a measure of receptor selectivity; these values were calculated from the antilogs of the differences between the respective $\mathrm{p} K_{\mathrm{i}}$ values.
(S)-enantiomers of the carbon (3a, 4a), silicon $(\mathbf{3 b}, \mathbf{4 b})$, and germanium analogs (3c, 4c) at $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors, again confirming the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ bioisosterism.

Replacement of the cyclopentyl moiety in the (R)enantiomers (eutomers) of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{3 a - c}$ and $\mathbf{4 a - c}$ by a phenyl ring (\rightarrow achiral diphenyl compounds $7 \mathbf{a}-\mathbf{c}$ and $\mathbf{8 a - c}$) decreased the affinities at $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors up to 16 -fold $\left[(R)-\mathbf{4 a}\right.$ vs. 8a at M_{5} receptors; Table 4]. In contrast, the differences in affinity for $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors between the (R)-enantiomers of $\mathbf{3 a - c}$ and $\mathbf{4 a - c}$ and the corresponding achiral dicyclopentyl compounds $\mathbf{5 a - c}$ and $\mathbf{6 a - c}$ (the latter being in all cases more potent than the diphenyl analogs 7a-c and $\mathbf{8 a - c}$) varied: $(R)-\mathbf{3 a}-\mathbf{c} /(R)-\mathbf{4 a}-\mathbf{c} \geq$ $\leq \mathbf{5 a}-\mathbf{c} / \mathbf{6 a}-\mathbf{c}$. Analogous with the pharmacological results obtained with the (R) - and (S)-enantiomers of the muscarinic antagonists procyclidine [13] and hex-ahydro-difenidol [14] and their corresponding diphenyl and dicyclohexyl derivatives, the concept of the 'four-binding-sites model' $[3,13,14]$ was used in the present study to explain the differences in binding of the (R) and (S)-enantiomers of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $3 \mathbf{3}-\mathbf{c}$ and $\mathbf{4 a - c}$ at muscarinic $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors. As can be seen
from Table 4, in most cases the sums (expected eudismic indices) of the differences observed (i) between the $\mathrm{p} K_{\mathrm{i}}$ values of the (R)-enantiomers of $\mathbf{3 a - c}$ and $\mathbf{4 a}-\mathbf{c}$ and the related diphenyl analogs $7 \mathbf{a}-\mathbf{c}$ and $\mathbf{8 a}-\mathbf{c}$ and (ii) between the $\mathrm{p} K_{\mathrm{i}}$ values of the (R)-enantiomers of $\mathbf{3 a}-\mathbf{c}$ and $\mathbf{4 a - c}$ and the corresponding dicyclopentyl derivatives $\mathbf{5 a - c}$ and $\mathbf{6 a - c}$ were similar to the experimentally obtained eudismic indices of the corresponding (R)- and (S)-enantiomers. These results suggest that the stereoselective interaction of the (R) - and (S)-enantiomers of the $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $\mathbf{3 a - c}$ and $\mathbf{4 a -}$ c with muscarinic $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors is mainly based on the opposite binding of the phenyl and cyclopentyl ring to their individual binding sites. Similar results have been obtained with cyclohexyl-substituted (instead of cyclopentyl) $\mathrm{C} / \mathrm{Si} / \mathrm{Ge}$ analogs $[3,4]$.

As far as the muscarinic receptor subtype selectivity is concerned, most compounds showed a slight preference for M_{1} receptors with similar affinities for $\mathrm{M}_{2}-$ M_{5} subtypes (Table 3). The highest M_{1} receptor selectivity was observed for the potent germanium compound $(R)-4 \mathrm{c}$ (12.9-fold, M_{1} over M_{2}; affinity profile: $\mathrm{M}_{1}>\mathrm{M}_{4} \geq \mathrm{M}_{5} \geq \mathrm{M}_{3} \geq \mathrm{M}_{2}$).

Table 4
Comparison of the eudismic indices ${ }^{\mathrm{a}}$ of the (R) - and (S)-enantiomers of $\mathbf{3 a - c}$ and $\mathbf{4 a - c}$ with the expected eudismic indices ${ }^{\mathrm{b}}$ calculated according to the 'four-binding-site model'

Compound	M ${ }_{1}$	M_{2}	M ${ }_{3}$	M_{4}	M_{5}
$[(R)-3 \mathrm{a}]-[5 \mathrm{a}]^{\text {c }}$	0.31	-0.15	0.02	0.04	-0.09
$[(R)-3 \mathrm{a}]-[7 \mathrm{a}]^{\text {d }}$	1.10	0.59	1.14	0.94	1.09
E.I.: $[(R)-\mathbf{3 a}]-[(S)-3]^{\text {a }}$	0.67	0.07	0.93	0.76	0.63
Expected E.I. ${ }^{\text {b }}$	1.41	0.44	1.16	0.98	1.00
$[(R)-\mathbf{3 b}]-[5 \mathbf{b}]^{\text {c }}$	-0.08	-0.21	-0.09	-0.14	-0.21
$[(R)-3 \mathbf{b}]-[7 \mathbf{b}]^{\text {d }}$	0.81	0.52	1.01	0.85	0.74
E.I.: $[(R)-\mathbf{3 b}]-[(S)-\mathbf{3 b}]^{\text {a }}$	0.79	0.39	0.99	0.83	0.63
Expected E.I. ${ }^{\text {b }}$	0.73	0.31	0.92	0.71	0.53
[(R)-3c]-[5c $]^{\text {c }}$	-0.26	-0.41	-0.31	-0.31	-0.38
[(R)-3c]-[7c ${ }^{\text {d }}$	0.59	0.37	0.87	0.71	0.61
E.I.: $[(R)-3 \mathrm{c}]-[(S)-3 \mathrm{c}]^{\text {a }}$	0.61	0.16	0.71	0.63	0.33
Expected E.I. ${ }^{\text {b }}$	0.33	-0.04	0.56	0.40	0.23
$[(R)-4 a]-[6 a]^{\text {c }}$	0.26	-0.16	-0.12	0.03	0.00
$[(R)-4 a]-[8 a]^{\text {d }}$	1.15	0.53	1.14	1.01	1.20
E.I.: $[(R)-4 a]-[(S)-4 a]^{\text {a }}$	1.29	0.36	1.35	1.19	1.08
Expected E.I. ${ }^{\text {b }}$	1.41	0.37	1.02	1.04	1.20
$[(R)-4 \mathbf{b}]-[\mathbf{6 b}]^{\text {c }}$	0.42	-0.07	0.08	0.07	0.11
$[(R)-4 \mathbf{b}]-[8 \mathbf{b}]^{\text {d }}$	0.63	0.35	0.74	0.72	0.74
E.I.: $[(R)-\mathbf{4 b}]-[(S)-\mathbf{4 b}]^{\text {a }}$	1.14	0.53	1.22	1.02	0.98
Expected E.I. ${ }^{\text {b }}$	1.05	0.28	0.82	0.79	0.85
[(R)-4c] $]$ [6 c$]^{\text {c }}$	0.69	0.11	0.20	0.35	0.25
[(R)-4c]-[8c] ${ }^{\text {d }}$	0.80	0.49	0.84	0.90	0.84
E.I.: $[(R)-4 \mathrm{c}]-[(S)-4 \mathrm{c}]^{\text {a }}$	1.28	0.60	1.25	1.23	1.02
Expected E.I. ${ }^{\text {b }}$	1.49	0.60	1.04	1.25	1.09

These values were obtained from $\mathrm{p} K_{\mathrm{i}}$ values determined in radioligand binding studies at cloned human muscarinic $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} receptors stably expressed in $\mathrm{CHO}-\mathrm{K} 1$ cells.
${ }^{\text {a }}$ Eudismic index (E.I.): difference between the $\mathrm{p} K_{\mathrm{i}}$ values of the corresponding (R) - and (S)-enantiomer.
${ }^{\mathrm{b}}$ Expected eudismic index (expected E.I.): the sum of the differences obtained according to ${ }^{\mathrm{c}}$ and ${ }^{\mathrm{d}}$.
${ }^{\text {c }}$ Difference between the $\mathrm{p} K_{\mathrm{i}}$ values of the (R)-enantiomer and the respective dicyclopentyl analog.
${ }^{\mathrm{d}}$ Difference between the $\mathrm{p} K_{\mathrm{i}}$ values of the (R)-enantiomer and the respective diphenyl analog.

3. Experimental

3.1. Syntheses

3.1.1. General procedures

All syntheses were carried out under dry nitrogen. The solvents used were dried and purified according to standard procedures and stored under nitrogen. Melting points (m.p.) (uncorrected) were determined with a Leitz Biomed microscope equipped with a heater (Leitz, Model M 350). The ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$-, and ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectra were recorded at $22{ }^{\circ} \mathrm{C}$ on a Bruker AMX-400 $\left({ }^{1} \mathrm{H}\right.$, $400.1 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100.6 \mathrm{MHz} ;{ }^{29} \mathrm{Si}, 79.5 \mathrm{MHz}$) or Bruker DRX-300 NMR spectrometer (${ }^{1} \mathrm{H}, 300.1 \mathrm{MHz} ;{ }^{13} \mathrm{C}$, 75.5 MHz; ${ }^{29} \mathrm{Si}$, 59.6 MHz). Chemical shifts (ppm) were determined relative to the internal $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}, \delta 7.24\right.$; solvent $\left.\mathrm{CDCl}_{3}\right), \mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}, \delta 77.0\right.$; solvent $\left.\mathrm{CDCl}_{3}\right)$, $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\left({ }^{1} \mathrm{H}, \delta 7.28\right.$; solvent $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), \mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{13} \mathrm{C}, \delta 128.0\right.$; solvent $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), \mathrm{CD}_{2} \mathrm{HOD}\left({ }^{1} \mathrm{H}, \delta 3.30\right.$; solvent $\mathrm{CD}_{3} \mathrm{OD}$), $\mathrm{CD}_{3} \mathrm{OD}\left({ }^{13} \mathrm{C}, \delta 49.0\right.$; solvent $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$, $\left[\mathrm{D}_{5}\right.$]acetone $\left({ }^{1} \mathrm{H}\right.$, $\delta 2.04$; solvent $\left[\mathrm{D}_{6}\right]$ acetone), $\left[\mathrm{D}_{6}\right]$ acetone $\left({ }^{13} \mathrm{C}, \delta 29.8\right.$, 206.3; solvent $\left[\mathrm{D}_{6}\right]$ acetone $)$, or external $\mathrm{Me}_{4} \mathrm{Si}\left({ }^{29} \mathrm{Si}, \delta 0\right.$;
solvent CDCl_{3}). Analysis and assignment of the ${ }^{1} \mathrm{H}-$ NMR data were partially supported by simulations using the wIN-DAISY software package (version 4.05, Bruker). Assignment of the ${ }^{13} \mathrm{C}$-NMR data was supported by DEPT 135 experiments. Optical rotations were measured at $20^{\circ} \mathrm{C}$ with a JASCO polarimeter, Model P-1030; $\mathrm{CH}_{3} \mathrm{OH}$ (purified by drying over Mg and subsequent distillation), acetone (purified by distillation), or CHCl_{3} [purified by dynamic drying over an $\mathrm{Al}_{2} \mathrm{O}_{3}$ column (50 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Merck, 1077) per 100 ml of CHCl_{3}) and subsequent distillation] served as solvents.

3.1.2. rac-2-Cyclopentyl-2-phenyl-4-(piperidin-1-yl)-butan-1-ol (rac-3a)

Compound rac-12 ($10.0 \mathrm{~g}, 31.7 \mathrm{mmol}$) was added in small portions to a stirred suspension of lithium aluminum hydride ($5.00 \mathrm{~g}, 132 \mathrm{mmol}$) in THF (200 ml) at room temperature (r.t.). After the mixture was stirred at r.t. for 1 h and heated under reflux for 2 h , saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution was added dropwise until the evolution of hydrogen was completed. The mixture was
then kept at r.t. for 18 h , and the precipitate was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(5 \times 40 \mathrm{ml})$. The combined organic solutions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents removed under reduced pressure. The residue was recrystallized from n-hexane to give rac-3a in 89% yield as a colorless crystalline solid $(8.52 \mathrm{~g}, 28.3 \mathrm{mmol}) ;$ m.p. $108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.1 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.2-1.7,1.9-2.2$, and $2.3-2.5(\mathrm{~m}, 23 \mathrm{H}$, $\left.\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{3} \mathrm{CH}, \mathrm{CCH}_{2} \mathrm{~N}\right), 4.07\left(\delta_{\mathrm{A}}\right)$ and $4.27\left(\delta_{\mathrm{B}}\right)(\mathrm{AB}$ system, $\left.J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\right), 7.1-7.5(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$), OH resonance not detected. ${ }^{13} \mathrm{C}$-NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.2\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $24.5\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{9}\right), 24.6\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 25.7\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $27.1\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right)$, $32.4\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 48.9$ $\left(\mathrm{CCH}_{2} \mathrm{O}\right), 50.2\left(\mathrm{C}-1, \mathrm{C}_{5} \mathrm{H}_{9}\right), 54.5\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 54.8$ $\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 66.3\left(\mathrm{CCH}_{2} \mathrm{O}\right), 125.4\left(\mathrm{C}-4, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $127.7\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{C}_{6} \mathrm{H}_{5}\right), 128.4\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 142.5$ $\left(\mathrm{C}-1, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Anal. Found: C, 79.7; H, 10.3; N, 4.8. Calc. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}\left(M_{\mathrm{r}}=301.5\right)$: C, 79.68; H, 10.36; N, 4.65\%.

3.1.3. rac-1-(3-Cyclopentyl-4-hydroxy-3-phenylbutyl)piperidinium chloride (rac-3a $\cdot \mathrm{HCl}$)

A saturated solution of HCl in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ was added to a stirred solution of rac-3a ($500 \mathrm{mg}, 1.66$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ at r.t. The mixture was stirred at r.t. for 15 h , and the precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{ml})$, and dried in vacuo to give $\mathrm{rac}-\mathbf{3 a} \cdot \mathrm{HCl}$ in 99% yield as a colorless crystalline solid ($557 \mathrm{mg}, 1.65 \mathrm{mmol}$); m.p. $189{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.1 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.0-3.7\left(\mathrm{~m}, 23 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{3} \mathrm{CH}\right.$, $\left.\mathrm{CCH}_{2} \mathrm{~N}\right), 3.93\left(\delta_{\mathrm{A}}\right)$ and $4.00\left(\delta_{\mathrm{B}}\right)\left(\mathrm{AB}\right.$ system, $J_{\mathrm{AB}}=$ $\left.11.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\right), 7.1-7.4\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), \mathrm{OH}$ resonance not detected. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100.6 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 23.0\left(\mathrm{C}-4, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), 24.7$ (C-3/C-5, $\left.\mathrm{NC}_{5} \mathrm{H}_{10}\right), 25.86\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 25.93\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right)$, $28.1\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 28.3\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 30.6$ $\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 48.5\left(\mathrm{CCH}_{2} \mathrm{O}\right), 50.0\left(\mathrm{C}-1, \mathrm{C}_{5} \mathrm{H}_{9}\right), 54.7$ $\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 55.8\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 65.7\left(\mathrm{CCH}_{2} \mathrm{O}\right)$, $127.8\left(\mathrm{C}-4, \mathrm{C}_{6} \mathrm{H}_{5}\right), 129.2\left(\mathrm{C}-2 / \mathrm{C}-6\right.$ or $\left.\mathrm{C}-3 / \mathrm{C}-5, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $129.6\left(\mathrm{C}-2 / \mathrm{C}-6\right.$ or $\left.\mathrm{C}-3 / \mathrm{C}-5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 142.2\left(\mathrm{C}-1, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Anal. Found: C, 70.9; H, 9.8; N, 4.1. Calc. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{ClNO}\left(M_{\mathrm{r}}=337.9\right)$: C, $71.09 ; \mathrm{H}, 9.54 ; \mathrm{N}, 4.14 \%$.

3.1.4. (R)-2-Cyclopentyl-2-phenyl-4-(piperidin-1-yl)-butan-1-ol $[(R)-3 a]$

A solution of (S, S)-O, O^{\prime}-dibenzoyltartaric acid (35.8 $\mathrm{g}, 100 \mathrm{mmol}$) in acetone (80 ml) was added to a stirred solution of rac-3a ($29.8 \mathrm{~g}, 98.8 \mathrm{mmol}$) in boiling acetone (150 ml), and the mixture was stirred under reflux for 1 h and at r.t. for another 15 h . The resulting crystalline precipitate (20.5 g) was isolated by filtration and subjected to a four-step fractional crystallization from EtOH. For this purpose, a boiling saturated solution of the crystals in EtOH was filtered and the clear hot filtrate then allowed to cool to r.t. over a period of
ca. 10 h (slow cooling in a water bath, starting at $80^{\circ} \mathrm{C}$). The mixture was kept at r.t. for additional 48 h , and the crystals formed were isolated by filtration and then subjected to the next crystallization step, finally yielding 6.92 g of the (S, S) - O, O^{\prime}-dibenzoyltartrate of (R)-3a (characterized by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ studies; data not given). The crystals were added to a mixture of 1.0 M aqueous NaOH solution (100 ml) and $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$. After the mixture was stirred at r.t. for 18 h , the organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue dried in vacuo to give (R) - 3 a in 29% yield [relative to (R)-3a in the racemic mixture of 3a] as a colorless crystalline solid ($4.39 \mathrm{~g}, 14.6 \mathrm{mmol}$); m.p. $131{ }^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac-3a. $[\alpha]_{366}^{25}=-68.4,[\alpha]_{436}^{25}=$ $-50.3,[\alpha]_{546}^{25}=-32.4,[\alpha]_{578}^{25}=-29.1,[\alpha]_{589}^{25}=-28.2$ (acetone, $c=1.50$). Anal. Found: C, 79.7; H, 10.3; N, 4.8. Calc. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}\left(M_{\mathrm{r}}=301.5\right): \mathrm{C}, 79.68 ; \mathrm{H}$, 10.36 ; N, 4.65%.

3.1.5. (R)-1-(3-Cyclopentyl-4-hydroxy-3-phenylbutyl)piperidinium chloride $[(R)-\mathbf{3 a} \cdot \mathrm{HCl}]$

This compound was prepared from (R) - $\mathbf{3 a}(300 \mathrm{mg}$, $995 \mu \mathrm{~mol}$) analogous to the synthesis of rac-3a $\cdot \mathrm{HCl}$ and isolated in 94% yield as a colorless crystalline solid ($317 \mathrm{mg}, 938 \mu \mathrm{~mol}$); m.p. $193{ }^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac3a $\cdot \mathrm{HCl}[\alpha]_{365}^{20}=16.4,[\alpha]_{405}^{20}=11.4,[\alpha]_{435}^{20}=9.1,[\alpha]_{546}^{20}=$ $5.0,[\alpha]_{599}^{20}=4.2(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 70.9; H, 9.3; N, 4.0. Calc. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{ClNO}\left(M_{\mathrm{r}}=\right.$ 337.9): C, 71.09 ; H, 9.54 ; N, 4.14%.

3.1.6. (S)-2-Cyclopentyl-2-phenyl-4-(piperidin-1-yl)-butan-1-ol [(S)-3a]

All mother liquors collected in the several steps of the resolution of rac-3a [see preparation of (R)-3a] were combined. The solvent was removed under reduced pressure and the solid residue added to a mixture of 2.0 M aqueous NaOH solution (150 ml) and $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$. The resulting mixture was stirred at r.t. for 30 min , the organic phase separated, and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 80 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue dried in vacuo to give an oily mixture consisting of (R)-3a and (S)-3a [14.7 g, 48.8 mmol ; enriched with (S)-3a]. A solution of $(R, R)-O, O^{\prime}$-dibenzoyltartaric acid monohydrate ($18.3 \mathrm{~g}, 48.6 \mathrm{mmol}$) in acetone (50 $\mathrm{ml})$ was added to a solution of this mixture in boiling acetone (150 ml). The resulting mixture was stirred under reflux for 1 h and at r.t. for another 15 h . The crystalline precipitate was isolated by filtration and then subjected to a four-step fractional crystallization
from EtOH as described for the preparation of (R)-3a. Treatment of the resulting salt with NaOH following the procedure described for the preparation of $(R)-\mathbf{3 a}$ afforded (S)-3a in 22% yield [relative to (S)-3a in the racemic mixture of 3a] as a colorless crystalline solid ($3.24 \mathrm{~g}, 10.7 \mathrm{mmol}$); m.p. $131^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac-3a. $[\alpha]_{366}^{25}=68.0, \quad[\alpha]_{436}^{25}=50.1, \quad[\alpha]_{546}^{25}=32.6, \quad[\alpha]_{578}^{25}=29.2$, $[\alpha]_{589}^{25}=28.0$ (acetone, $c=1.50$). Anal. Found: C, 79.7; $\mathrm{H}, 10.4 ; \mathrm{N}, 4.8$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}\left(M_{\mathrm{r}}=301.5\right)$: C, 79.68; H, 10.36; N, 4.65\%.

3.1.7. (S)-1-(3-Cyclopentyl-4-hydroxy-3-phenylbutyl)piperidinium chloride [(S)-3a $\cdot \mathrm{HCl}]$

This compound was prepared from (S)-3a (300 mg , $995 \mu \mathrm{~mol})$ analogous to the synthesis of $\mathrm{rac}-\mathbf{3 a} \cdot \mathrm{HCl}$ and isolated in 97% yield as a colorless crystalline solid (326 $\mathrm{mg}, 965 \mu \mathrm{~mol}) ;$ m.p. $193^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac$\mathbf{3 a} \cdot \mathrm{HCl} .[\alpha]_{365}^{20}=-16.4,[\alpha]_{405}^{20}=-11.4,[\alpha]_{435}^{20}=-9.1$, $[\alpha]_{546}^{20}=-5.0,[\alpha]_{589}^{20}=-4.2(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 71.2; H, 9.5; N, 4.0. Calc. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{ClNO}$ ($M_{\mathrm{r}}=337.9$): C, $71.09 ; \mathrm{H}, 9.54 ; \mathrm{N}, 4.14 \%$.

3.1.8. rac-Cyclopentyl(hydroxymethyl)phenyl-

[2-(piperidin-1-yl)ethyl]silane (rac-3b)
A 1.6 M solution of n-butyllithium in n-hexane (13.0 $\mathrm{ml}, 20.8 \mathrm{mmol}$ of $n-\mathrm{BuLi}$) was added dropwise at $40^{\circ} \mathrm{C}$ within 15 min to a stirred solution of piperidine $(4.50 \mathrm{~g}$, 52.8 mmol) in THF (50 ml). After the mixture was stirred at $40^{\circ} \mathrm{C}$ for 30 min , a solution of rac-23 $(6.00 \mathrm{~g}$, 19.7 mmol) in THF (30 ml) was added dropwise over a period of 30 min . The resulting mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 2 h and at r.t. for another 16 h , followed by the cautious addition of 2.0 M hydrochloric acid (150 ml). After the mixture was stirred at r.t. for 30 min , $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})$ and 6.0 M aqueous KOH solution (70 $\mathrm{ml})$ were added. The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue purified by Kugelrohr distillation ($200{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar}$) to give rac-3b in 93% yield as an oily liquid ($5.80 \mathrm{~g}, 18.3 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.1 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.0-1.9\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{C}, \mathrm{SiCHC}_{2}\right.$, $\left.\mathrm{CCH}_{2} \mathrm{C}\right), 2.1-2.6\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{~N}\right), 3.59\left(\delta_{\mathrm{A}}\right)$ and 3.66 $\left(\delta_{\mathrm{B}}\right)\left(\mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}}=14.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{O}\right), 7.2-7.4$ and $7.5-7.7\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{SiC}_{6} \mathrm{H}_{5}\right)$, OH resonance not detected. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.8$ $\left(\mathrm{SiCH}_{2} \mathrm{C}\right), 23.1\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 24.2\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 25.2$ $\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 26.7 \quad\left(\mathrm{CCH}_{2} \mathrm{C}, \quad \mathrm{SiC}_{5} \mathrm{H}_{9}\right), \quad 26.8$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 28.2\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, 49.9 $\left(\mathrm{SiCH}_{2} \mathrm{O}\right), 54.0\left(\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 54.5\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $127.8\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 129.1\left(\mathrm{C}-4, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 134.6$ $\left(\mathrm{C}-1, \quad \mathrm{SiC}_{6} \mathrm{H}_{5}\right), \quad 135.1 \quad\left(\mathrm{C}-2 / \mathrm{C}-6, \quad \mathrm{SiC}_{6} \mathrm{H}_{5}\right) .{ }^{29} \mathrm{Si}-\mathrm{NMR}$ (79.5 MHz, CDCl_{3}): $\delta-4.6$. Anal. Found: C, $71.5 ; \mathrm{H}$,
10.0; N , 4.3. Calc. for $\mathrm{C}_{19} \mathrm{H}_{31}$ NOSi ($M_{\mathrm{r}}=317.5$): C , 71.87; H, 9.84; N, 4.41\%.

3.1.9. rac-1-\{2-[Cyclopentyl(hydroxymethyl)phenylsilyl]ethyl\}piperidinium chloride (rac-3b•HCl)

This compound was prepared from rac-3b (600 mg , 1.89 mmol) analogous to the synthesis of $\mathrm{rac}-\mathbf{3 a} \cdot \mathrm{HCl}$ and isolated, after crystallization from acetone- $\mathrm{Et}_{2} \mathrm{O}$ [diffusion of $\mathrm{Et}_{2} \mathrm{O}$ via the gas phase into a solution of the product in acetone (15 ml) at r.t.], in 91% yield as a colorless crystalline solid ($609 \mathrm{mg}, 1.72 \mathrm{mmol}$); m.p. $124-125{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.1-$ $1.3,1.3-2.2,1.8-2.0$, and $2.0-2.2\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{C}\right.$, $\mathrm{SiCHC}_{2}, \mathrm{CCH}_{2} \mathrm{C}$), 2.4-2.7, 2.9-3.1, 3.1-3.3, and 3.4$3.6\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{~N}\right), 2.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.84\left(\delta_{\mathrm{A}}\right)$ and $3.79\left(\delta_{\mathrm{B}}\right)$ (AB system, $J_{\mathrm{AB}}=14.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{O}$), 7.2-7.5 and 7.5-7.7 (m, 5H, $\mathrm{SiC}_{6} \mathrm{H}_{5}$), 10.8 (br s, 1 H , $\mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.7\left(\mathrm{SiCH}_{2} \mathrm{C}\right)$, $22.3\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 22.6\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $22.8(\mathrm{C}-3 / \mathrm{C}-5$, $\left.\mathrm{NC}_{5} \mathrm{H}_{10}\right) 26.68\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 26.71\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{SiC}_{5} \mathrm{H}_{9}\right), 28.06\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 28.11\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{SiC}_{5} \mathrm{H}_{9}\right), 50.9\left(\mathrm{SiCH}_{2} \mathrm{O}\right), 51.8\left(\mathrm{C}-2\right.$ or $\left.\mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $52.4\left(\mathrm{C}-2\right.$ or $\left.\mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 54.6\left(\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 128.2$ $\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 129.8\left(\mathrm{C}-4, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 132.9(\mathrm{C}-1$, $\left.\mathrm{SiC}_{6} \mathrm{H}_{5}\right), 134.5 \quad\left(\mathrm{C}-2 / \mathrm{C}-6, \quad \mathrm{SiC}_{6} \mathrm{H}_{5}\right) .{ }^{29} \mathrm{Si}-\mathrm{NMR}$ (59.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.8$. Anal. Found: C, 64.3; H, 9.0; $\mathrm{N}, 4.0$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{ClNOSi}\left(M_{\mathrm{r}}=354.0\right)$: C, 64.46; H, 9.11; N, 3.96\%.

3.1.10. (R)-Cyclopentyl(hydroxymethyl)-phenyl[2-(piperidin-1-yl)ethyl]silane [(R)-3b)]

A 2.0 M aqueous NaOH solution ($250 \mu \mathrm{l}, 500 \mu \mathrm{~mol}$ of NaOH) was added to a mixture of an aqueous solution (10 ml) of $(R) \mathbf{- 3 b} \cdot \mathrm{HCl}(100 \mathrm{mg}, 282 \mu \mathrm{~mol})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$. After the resulting mixture was stirred at r.t. for 5 min , the organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue dried in vacuo to give (R)-3b in 91% yield as an oily liquid ($81.5 \mathrm{mg}, 257 \mu \mathrm{~mol}$). The NMR data of the product were identical to those obtained for rac-3b. $[\alpha]_{365}^{20}=-19.8,[\alpha]_{405}^{20}=-16.8$, $[\alpha]_{435}^{20}=-15.0,[\alpha]_{546}^{20}=-9.2,[\alpha]_{589}^{20}=-8.4(\mathrm{MeOH}$, $c=1.00$). Anal. Found: C, 71.6; H, 9.9; N, 4.3. Calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NOSi}\left(M_{\mathrm{r}}=317.5\right): \mathrm{C}, 71.87 ; \mathrm{H}, 9.84 ; \mathrm{N}$, 4.41\%.

3.1.11. (R)-1-\{2-[Cyclopentyl(hydroxymethyl)phenylsilyljethyl\}piperidinium chloride $[(\mathrm{R})-\mathbf{3 b} \cdot \mathrm{HCl}]$

The mother liquors collected in the first six crystallization steps of the resolution of $\mathrm{rac}-\mathbf{3 b}$ [see preparation of $(S)-\mathbf{3 b} \cdot \mathrm{HCl}]$ were combined. The solvent was removed under reduced pressure and the solid residue suspended in water $(200 \mathrm{ml}) . \mathrm{EtO}_{2}(200 \mathrm{ml})$ and 2.0 M aqueous NaOH solution (20 ml) were added, and the
resulting mixture was stirred at r.t. for 15 min . The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue dried in vacuo to give an oily mixture consisting of (S)-3b and $(R)-\mathbf{3 b}[7.00 \mathrm{~g}, 22.0 \mathrm{mmol}$; enriched with $(R)-3 \mathbf{b}]$. A solution of this product in boiling acetone (150 ml) was added to a filtered solution of (R, R)-O, O^{\prime}-di- p-toluoyltartaric acid (8.40 g , 21.7 mmol) in boiling acetone (150 ml). The resulting mixture was stirred for 10 min , cooled to r.t., and then kept undisturbed for 40 h . The crystalline solid formed was isolated by filtration and subjected to a nine-step fractional crystallization from acetone following the procedure described for the preparation of $(S)-\mathbf{3 b} \cdot \mathrm{HCl}$. The product (450 mg) finally obtained was added to a mixture of water $(50 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$, followed by the addition of 2.0 M aqueous NaOH solution (2.0 ml). After the mixture was stirred at r.t. for 15 min , the organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue dried in vacuo to yield (R)-3b as an oily liquid $(190 \mathrm{mg}, 598 \mu \mathrm{~mol})$. This product was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $(50 \mathrm{ml})$, followed by the addition of a saturated solution of HCl in $\mathrm{Et}_{2} \mathrm{O}(500 \mu \mathrm{l})$. After the mixture was stirred at r.t. for 15 min , the solvent and excess HCl were removed under reduced pressure. The solid residue was dried in vacuo and then recrystallized from acetone $-\mathrm{Et}_{2} \mathrm{O}$ [diffusion of $\mathrm{Et}_{2} \mathrm{O}$ via the gas phase into a solution of the product in acetone $(15 \mathrm{ml})$ at r.t.] to give $(R)-\mathbf{3 b} \cdot \mathrm{HCl}$ in 3% yield [relative to $(R)-\mathbf{3 b}$ in the racemic mixture of $\mathbf{3 b}$] as a colorless crystalline solid ($196 \mathrm{mg}, 554 \mu \mathrm{~mol}$); m.p. $125^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained rac$\mathbf{3 b} \cdot \mathrm{HCl} .[\alpha]_{365}^{20}=11.0,[\alpha]_{405}^{20}=7.8,[\alpha]_{435}^{20}=6.4,[\alpha]_{546}^{20}=$ $3.9,[\alpha]_{589}^{20}=3.5(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 64.3; H, 9.1; N, 4.0. Calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{ClNOSi}\left(M_{\mathrm{r}}=\right.$ 354.0): C, 64.46; H, 9.11; N, 3.96\%.

3.1.12. (S)-Cyclopentyl(hydroxymethyl)-

phenyl[2-(piperidin-1-yl)ethyl]silane [(S)-3b)]

This compound was prepared from $(S)-\mathbf{3 b} \cdot \mathrm{HCl}(100$ $\mathrm{mg}, 282 \mu \mathrm{~mol})$ analogous to the synthesis of $(R)-\mathbf{3 b}$ and isolated in 92% yield as an oily liquid $(82.5 \mathrm{mg}, 260$ $\mu \mathrm{mol})$. The NMR data of the product were identical to those obtained for rac-3b$.[\alpha]_{365}^{20}=19.8,[\alpha]_{405}^{20}=16.8$, $[\alpha]_{435}^{20}=15.0,[\alpha]_{546}^{20}=9.2,[\alpha]_{589}^{20}=8.4(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 71.6; H, 10.0; N, 4.3. Calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \operatorname{NOSi}\left(M_{\mathrm{r}}=317.5\right): \mathrm{C}, 71.87 ; \mathrm{H}, 9.84 ; \mathrm{N}$, 4.41\%.
3.1.13. (S)-1-\{2-[Cyclopentyl(hydroxymethyl)phenylsilyl]ethyl\}piperidinium chloride $[(S)-\mathbf{3 b} \cdot \mathrm{HCl}]$
$(S, S)-O, O^{\prime}$-Di-p-toluoyltartaric acid $(13.0 \mathrm{~g}, 33.6$ mmol) was dissolved in boiling acetone (200 ml). The hot solution was filtered and then added to a solution of rac-3b ($10.8 \mathrm{~g}, 34.0 \mathrm{mmol}$) in boiling acetone (100 $\mathrm{ml})$. The resulting mixture was stirred for 30 min , cooled to r.t., and then kept undisturbed for 16 h . The crystalline solid formed was isolated by filtration and then subjected to an 11-step fractional crystallization from acetone. For this purpose, the boiling saturated solution of the crystals in acetone was filtered and then allowed to cool slowly to r.t. over a period of ca. 4 h (slow cooling in a water bath, starting at $60^{\circ} \mathrm{C}$). The mixture was kept undisturbed at r.t. for another 48 h , and the crystalline product was isolated by filtration and then subjected to the next crystallization step to yield finally 540 mg of a crystalline solid. [The mother liquors of the first six crystallization steps were combined and used for the preparation of $(R)-\mathbf{3 b} \cdot \mathrm{HCl}$.] This product was added to a mixture of water $(60 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{ml})$, followed by the addition of 2.0 M aqueous NaOH solution (2.0 ml). After the resulting mixture was stirred at r.t. for 15 min , the organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue dried in vacuo to give (S)-3b as an oily liquid ($220 \mathrm{mg}, 683$ $\mu \mathrm{mol})$. This product was dissolved in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$, followed by the addition of a saturated solution of HCl in $\mathrm{Et}_{2} \mathrm{O}(500 \mu \mathrm{l})$. After the mixture was stirred at r.t. for 15 min , the solvent and excess HCl were removed under reduced pressure. The solid residue was dried in vacuo and then recrystallized from acetone- $\mathrm{Et}_{2} \mathrm{O}$ [diffusion of $\mathrm{Et}_{2} \mathrm{O}$ via the gas phase into a solution of the product in acetone (15 ml) at r.t.] to give $(S) \mathbf{3 b} \cdot \mathrm{HCl}$ in 4% yield [relative to (S)-3b in the racemic mixture of $\mathbf{3 b}$] as a colorless crystalline solid ($225 \mathrm{mg}, 636 \mu \mathrm{~mol}$); m.p. $125{ }^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac-3b $\cdot \mathrm{HCl} .[\alpha]_{365}^{20}=-11.0$, $[\alpha]_{405}^{20}=-7.8, \quad[\alpha]_{435}^{20}=-6.4,[\alpha]_{546}^{20}=-3.9,[\alpha]_{589}^{20}=$ $-3.5(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 64.3; H, 9.1; $\mathrm{N}, 4.0$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{ClNOSi}\left(M_{\mathrm{r}}=354.0\right)$: C, 64.46; H, 9.11; N, 3.96\%.

3.1.14. rac-Cyclopentyl(hydroxymethyl)phenyl[2-(piperidin-1-yl)ethyl]germane (rac-3c)

A 1.35 M solution of n-butyllithium in n-hexane (109 $\mathrm{ml}, 147 \mathrm{mmol}$ of $n-\mathrm{BuLi}$) was added dropwise at $50{ }^{\circ} \mathrm{C}$ within 15 min to a stirred solution of piperidine (25.1 g , 295 mmol) in THF (230 ml). After the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 30 min , a solution of rac-30 $(24.5 \mathrm{~g}$, 70.2 mmol) in THF (230 ml) was added dropwise over a period of 35 min . The resulting mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 2 h , cooled to r.t., and then added cautiously
to 6.0 M hydrochloric acid $(450 \mathrm{ml})$. After the mixture was stirred at r.t. for $30 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(500 \mathrm{ml})$ and 6.0 M aqueous KOH solution (500 ml) were added. The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 300 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue purified by Kugelrohr distillation ($180{ }^{\circ} \mathrm{C} / 0.01$ mbar) to give rac-3c in 87% yield as an oily liquid (22.0 $\mathrm{g}, 60.8 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.2-$ 1.9 and $2.1-2.6\left(\mathrm{~m}, 23 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{C}, \mathrm{GeCHC}_{2}, \mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{CCH}_{2} \mathrm{~N}\right), 3.78\left(\delta_{\mathrm{A}}\right)$ and $3.89\left(\delta_{\mathrm{B}}\right)\left(\mathrm{AB}\right.$ system, $J_{\mathrm{AB}}=$ $12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{O}$), 6.7 (br s, $1 \mathrm{H}, \mathrm{OH}$), $7.2-7.3$ and $7.4-7.5\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{GeC}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$-NMR $(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 11.6\left(\mathrm{GeCH}_{2} \mathrm{C}\right), 24.0\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 25.0$ $\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 25.4 \quad\left(\mathrm{C}-1, \quad \mathrm{GeC}_{5} \mathrm{H}_{9}\right), \quad 26.03$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right)$, $26.10\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 28.9$ (2 $\left.\mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right)$, $50.5\left(\mathrm{GeCH}_{2} \mathrm{O}\right) 54.4(\mathrm{C}-2 / \mathrm{C}-6$, $\left.\mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 54.8 \quad\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 127.9 \quad(\mathrm{C}-3 / \mathrm{C}-5$, $\left.\mathrm{GeC}_{6} \mathrm{H}_{5}\right), \quad 128.3\left(\mathrm{C}-4, \mathrm{GeC}_{6} \mathrm{H}_{5}\right), \quad 134.1 \quad(\mathrm{C}-2 / \mathrm{C}-6$, $\left.\mathrm{GeC}_{6} \mathrm{H}_{5}\right), 138.1\left(\mathrm{C}-1, \mathrm{GeC}_{6} \mathrm{H}_{5}\right)$. Anal. Found: C, 63.2; $\mathrm{H}, 8.8 ; \mathrm{N}, 3.9$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{GeNO}\left(M_{\mathrm{r}}=362.1\right)$: C, 63.03; H, 8.63; N, 3.87\%.

3.1.15. rac-1-\{2-[Cyclopentyl(hydroxymethyl)phenylgermyl]ethyl\}piperidinium chloride ($\mathrm{rac}-\mathbf{3 c} \cdot \mathrm{HCl}$)

This compound was prepared from rac-3c (453 mg , 1.25 mmol) analogous to the synthesis of $\mathrm{rac}-\mathbf{3 a} \cdot \mathrm{HCl}$ and isolated in 94% yield as a colorless crystalline solid ($470 \mathrm{mg}, 1.18 \mathrm{mmol}$); m.p. $119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.2-2.3$ and $2.4-2.7(\mathrm{~m}, 18 \mathrm{H}$, $\left.\mathrm{GeCH}_{2} \mathrm{C}, \quad \mathrm{GeCHC}_{2}, \quad \mathrm{CCH}_{2} \mathrm{C}\right), \quad 2.9-3.6(\mathrm{~m}, \quad 6 \mathrm{H}$, $\mathrm{CCH}_{2} \mathrm{~N}$), $4.00\left(\delta_{\mathrm{A}}\right)$ and $4.05\left(\delta_{\mathrm{B}}\right)\left(\mathrm{AB}\right.$ system, $J_{\mathrm{AB}}=$ $12.8 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{GeCH}_{2} \mathrm{O}$), $7.2-7.5\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{GeC}_{6} \mathrm{H}_{5}\right), 10.9$ (br s, $1 \mathrm{H}, \mathrm{NH}$), OH resonance not detected. ${ }^{13} \mathrm{C}$-NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.5\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 22.2(\mathrm{C}-4$, $\left.\mathrm{NC}_{5} \mathrm{H}_{10}\right), 22.7\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 25.2\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right)$, $26.00\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.05\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right)$, $28.93\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 28.98\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right)$, $51.7 \quad\left(\mathrm{GeCH}_{2} \mathrm{O}\right), \quad 52.3 \quad\left(\mathrm{C}-2 / \mathrm{C}-6, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 55.4$ $\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 128.3\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{GeC}_{6} \mathrm{H}_{5}\right), 128.9(\mathrm{C}-4$, $\left.\mathrm{GeC}_{6} \mathrm{H}_{5}\right), \quad 134.1 \quad\left(\mathrm{C}-2 / \mathrm{C}-6, \quad \mathrm{GeC}_{6} \mathrm{H}_{5}\right), \quad 135.9 \quad(\mathrm{C}-1$, $\mathrm{GeC}_{6} \mathrm{H}_{5}$). Anal. Found: C, 57.2; H, 8.2; N, 3.5. Calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{ClGeNO}\left(M_{\mathrm{r}}=398.5\right)$: C, $57.26 ; \mathrm{H}, 8.09 ; \mathrm{N}$, 3.51%.

3.1.16. (R)-Cyclopentyl(hydroxymethyl)phenyl[2-(piperidin-1-yl)ethyl]germane $[(R)-3 c]$

A solution of (S)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate ($8.60 \mathrm{~g}, 24.7 \mathrm{mmol}$) in boiling EtOH (180 $\mathrm{ml})$ was added to a solution of $\mathrm{rac}-3 \mathrm{c}(8.94 \mathrm{~g}, 24.7$ $\mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{ml})$. After the mixture was stirred under reflux for 30 min , water (ca. 100 ml) was added until the formation of a white precipitate was observed. Ethanol was added to the boiling solution until the precipitate just disappeared, and the hot solution was
filtered, cooled to r.t. within 10 h (slow cooling in a water bath, starting at $80^{\circ} \mathrm{C}$), and the mixture then kept undisturbed for 48 h . The resulting precipitate was isolated by filtration and then subjected to a 13 -step fractional crystallization from EtOH-water as described above. For this purpose, the boiling saturated solution of the precipitate in EtOH -water was filtered, cooled to r.t. within 10 h , and the mixture then kept undisturbed for 48 h . The crystalline product was isolated by filtration and subjected to the next crystallization step to yield finally 686 mg of a crystalline solid. This product was added to a mixture of 2.0 M aqueous NaOH solution (30 ml) and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$, and the mixture was stirred at r.t. for 30 min . The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue dried in vacuo to give $(R)-3 \mathbf{c}$ in 8% yield [relative to $(R)-3 \mathbf{c}$ in the racemic mixture of $3 \mathbf{c}]$ as an oily liquid ($340 \mathrm{mg}, 939 \mu \mathrm{~mol}$). The NMR data of the product were identical to those obtained for rac-3c. $[\alpha]_{365}^{20}=$ $-11.5,[\alpha]_{405}^{20}=-11.0,[\alpha]_{435}^{20}=-10.1,[\alpha]_{546}^{20}=-7.3$, $[\alpha]_{589}^{20}=-6.3(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 63.0; $\mathrm{H}, 8.6$; N, 3.7. Calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{GeNO}\left(M_{\mathrm{r}}=362.1\right)$: C, 63.03; H, 8.63; N, 3.87\%.

3.1.17. (R)-1-\{2-[Cyclopentyl(hydroxymethyl)phenylgermyl]ethyl\}piperidinium chloride $[(\mathrm{R})-3 \mathrm{c} \cdot \mathrm{HCl}]$

This compound was prepared from $(R)-3 \mathrm{c}(50.0 \mathrm{mg}$, $138 \mu \mathrm{~mol})$ analogous to the synthesis of $\mathrm{rac}-\mathbf{3 a} \cdot \mathrm{HCl}$ and isolated in 94% yield as a colorless crystalline solid ($52.0 \mathrm{mg}, 130 \mu \mathrm{~mol}$); m.p. $127^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac$3 \mathrm{c} \cdot \mathrm{HCl} .[\alpha]_{365}^{20}=10.9,[\alpha]_{405}^{20}=7.0,[\alpha]_{435}^{20}=5.6,[\alpha]_{546}^{20}=$ 2.6, $[\alpha]_{589}^{20}=2.3(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 56.9; H, 8.3; N, 3.7. Calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{ClGeNO}\left(M_{\mathrm{r}}=\right.$ 398.5): C, 57.26 ; H, 8.09; N, 3.51\%.

3.1.18. (S)-Cyclopentyl(hydroxymethyl)phenyl[2-(piperidin-1-yl)ethyl]germane [(S)-3c]

All mother liquors collected in the several steps of the resolution of rac-3c [see preparation of $(R)-3 \mathrm{c}$] were combined. The solvent was removed under reduced pressure and the solid residue added to a mixture of 2.0 M aqueous NaOH solution (100 ml) and $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{ml})$. The resulting mixture was stirred at r.t. for 30 min , the organic phase separated, and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 80 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue dried in vacuo to give an oily mixture consisting of $(R)-3 \mathbf{c}$ and $(S)-3 \mathbf{c}[6.44 \mathrm{~g}, 17.8 \mathrm{mmol}$; enriched with $(S)-3 c]$. A solution of this product in $\mathrm{EtOH}(70 \mathrm{ml})$ was added to a solution of (R)-1, 1^{\prime}-binaphthyl- $2,2^{\prime}$-diyl hydrogen phosphate ($6.20 \mathrm{~g}, 17.8 \mathrm{mmol}$) in boiling EtOH
$(140 \mathrm{ml})$. After the mixture was stirred under reflux for 30 min , water (ca. 80 ml) was added until the formation of a white precipitate was observed. EtOH was added to the boiling solution until the precipitate just disappeared, and the hot solution was filtered, cooled to r.t. within 10 h , and the mixture then kept undisturbed for 48 h . The resulting precipitate was isolated by filtration and subjected to a 17 -step fractional crystallization from EtOH -water as described above. For this purpose, the boiling saturated solution of the precipitate in EtOH -water was filtered, cooled to r.t. within 10 h , and the mixture then kept undisturbed for 48 h . The crystalline product was isolated by filtration and subjected to the next crystallization step to yield finally 330 mg of a crystalline solid. This product was added to a mixture of 2.0 M aqueous NaOH solution (20 ml) and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$, and the resulting mixture was stirred at r.t. for 30 min . The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue dried in vacuo to give (S)-3c in 4% yield [relative to $(S)-3 \mathbf{c}$ in the racemic mixture of $3 \mathbf{c}$] as an oily liquid ($164 \mathrm{mg}, 453 \mu \mathrm{~mol}$). The NMR data of the product were identical to those obtained for rac-3c. $[\alpha]_{365}^{20}=11.5, \quad[\alpha]_{405}^{20}=11.0, \quad[\alpha]_{435}^{20}=10.1, \quad[\alpha]_{546}^{20}=7.3$, $[\alpha]_{589}^{20}=6.3(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 63.1; H, 8.8; N, 3.9. Calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{GeNO}\left(M_{\mathrm{r}}=362.1\right)$: C, 63.03; H, 8.63; N, 3.87\%.

3.1.19. (S)-1-\{2-[Cyclopentyl(hydroxymethyl)phenylgermyl]ethyl\}piperidinium chloride $[(S)-3 c \cdot H C l]$

This compound was prepared from $(S)-3 c(45.0 \mathrm{mg}$, $124 \mu \mathrm{~mol})$ analogous to the synthesis of $\mathrm{rac}-\mathbf{3 a} \cdot \mathrm{HCl}$ and isolated in 97% yield as a colorless crystalline solid ($48.0 \mathrm{mg}, 120 \mu \mathrm{~mol}$); m.p. $127^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac$3 \mathrm{c} \cdot \mathrm{HCl} .[\alpha]_{365}^{20}=-10.9,[\alpha]_{405}^{20}=-7.0,[\alpha]_{435}^{20}=-5.6$, $[\alpha]_{546}^{20}=-2.6,[\alpha]_{589}^{20}=-2.3(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 56.9; H, 8.3; N, 3.7. Calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{ClGeNO}\left(M_{\mathrm{r}}=398.5\right): \mathrm{C}, 57.26 ; \mathrm{H}, 8.09 ; \mathrm{N}$, 3.51\%.

3.1.20. rac-1-(3-Cyclopentyl-4-hydroxy-3-phenylbutyl)-1-methylpiperidinium iodide (rac-4a)

Methyl iodide ($4.70 \mathrm{~g}, 33.1 \mathrm{mmol}$) was added to a solution of $\mathrm{rac}-\mathbf{3 a}(1.00 \mathrm{~g}, 3.32 \mathrm{mmol})$ in acetone (50 $\mathrm{ml})$ and the resulting mixture stirred at r.t. for 21 h . The solvent and excess methyl iodide were removed under reduced pressure, and the solid residue was dried in vacuo and then recrystallized from acetone- $\mathrm{Et}_{2} \mathrm{O}$ (diffusion of $\mathrm{Et}_{2} \mathrm{O}$ via the gas phase into a saturated solution of the product in acetone at r.t.) to give rac$\mathbf{4 a}$ in 92% yield as a colorless crystalline solid (1.36 g , 3.07 mmol); m.p. $138{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.1 MHz , [D_{6}]acetone): $\delta 1.1-2.0,2.2-2.6,3.1-3.2$, and 3.6-4.2
($\mathrm{m}, 25 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{3} \mathrm{CH}, \mathrm{CCH}_{2} \mathrm{~N}, \mathrm{CCH}_{2} \mathrm{O}$), 3.34 (s , $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.1-7.4\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), \mathrm{OH}$ resonance not detected. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100.6 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone): $\delta 20.65$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 20.71\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 21.6 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), 25.0$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 25.1\left(\mathrm{CCH}_{2} \mathrm{C}\right), 26.8\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.55$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.62\left(\mathrm{CCH}_{2} \mathrm{C}\right), 47.4\left(\mathrm{CCH}_{2} \mathrm{O}\right), 47.8(\mathrm{C}-1$, $\mathrm{C}_{5} \mathrm{H}_{9}$, or $\left.\mathrm{NCH}_{3}\right), 49.3\left(\mathrm{C}-1, \mathrm{C}_{5} \mathrm{H}_{9}\right.$, or $\left.\mathrm{NCH}_{3}\right), 61.5$ (2 C), 63.3, and $63.4\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$, $\left.\mathrm{CCH}_{2} \mathrm{O}\right), 126.9\left(\mathrm{C}-4, \mathrm{C}_{6} \mathrm{H}_{5}\right), 128.2(\mathrm{C}-2 / \mathrm{C}-6$ or $\mathrm{C}-3 / \mathrm{C}-5$, $\mathrm{C}_{6} \mathrm{H}_{5}$), $128.5\left(\mathrm{C}-2 / \mathrm{C}-6\right.$ or $\left.\mathrm{C}-3 / \mathrm{C}-5, \mathrm{C}_{6} \mathrm{H}_{5}\right) 142.4(\mathrm{C}-1$, $\mathrm{C}_{6} \mathrm{H}_{5}$). Anal. Found: C, 56.6; H, 7.7; N, 3.1. Calc. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{INO}\left(M_{\mathrm{r}}=443.4\right)$: C, $56.88 ; \mathrm{H}, 7.73 ; \mathrm{N}, 3.16 \%$.

3.1.21. (R)-1-(3-Cyclopentyl-4-hydroxy-3-phenylbutyl)1 -methylpiperidinium iodide $[(R)-4 a]$
 This compound was prepared from (R)-3a (500 mg , 1.66 mmol) analogous to the synthesis of rac-4a and isolated in 91% yield as a colorless crystalline solid (667 $\mathrm{mg}, 1.50 \mathrm{mmol})$; m.p. $177^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac-4a. $[\alpha]_{546}^{20}=-18.6, \quad[\alpha]_{589}^{20}=-16.4 \quad\left(\mathrm{CHCl}_{3}, \quad c=1.00\right)$. Anal. Found: C, 56.6; H, 7.7; N, 3.2. Calc. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{INO}\left(M_{\mathrm{r}}=443.4\right): \mathrm{C}, 56.88 ; \mathrm{H}, 7.73 ; \mathrm{N}, 3.16 \%$.

3.1.22. (S)-1-(3-Cyclopentyl-4-hydroxy-3-phenylbutyl)-1-methylpiperidinium iodide [(S)-4a]
 This compound was prepared from (S) - $\mathbf{3 a}(500 \mathrm{mg}$, 1.66 mmol) analogous to the synthesis of rac-4a and isolated in 93% yield as a colorless crystalline solid (684 $\mathrm{mg}, 1.54 \mathrm{mmol})$; m.p. $177{ }^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac-4a. $[\alpha]_{546}^{20}=18.6, \quad[\alpha]_{589}^{20}=16.4 \quad\left(\mathrm{CHCl}_{3}, \quad c=1.00\right)$. Anal. Found: C, 56.6; H, 7.7; N, 3.2. Calc. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{INO}$ $\left(M_{\mathrm{r}}=443.4\right): \mathrm{C}, 56.88 ; \mathrm{H}, 7.73 ; \mathrm{N}, 3.16 \%$.

3.1.23. rac-1-\{2-[Cyclopentyl(hydroxymethyl)phenyl-

 silyl]ethyl\}-1-methylpiperidinium iodide (rac-4b)This compound was prepared from rac-3b $(600 \mathrm{mg}$, 1.89 mmol) analogous to the synthesis of rac-4a and isolated in 89% yield as a colorless crystalline solid (773 $\mathrm{mg}, 1.68 \mathrm{mmol}$); m.p. $159-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.1 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.2-1.6$ and $1.6-2.0(\mathrm{~m}, 17 \mathrm{H}$, $\mathrm{SiCH}_{2} \mathrm{C}, \mathrm{SiCHC}_{2}, \mathrm{CCH}_{2} \mathrm{C}$), $3.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.15(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 3.4-3.7 and 3.9-4.1 (m, $6 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{~N}$), $3.89\left(\delta_{\mathrm{A}}\right)$ and $3.84\left(\delta_{\mathrm{B}}\right)\left(\mathrm{AB}\right.$ system, $J_{\mathrm{AB}}=13.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{SiCH}_{2} \mathrm{O}\right), 7.3-7.5$ and $7.5-7.6\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{SiC}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}-$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.3\left(\mathrm{SiCH}_{2} \mathrm{C}\right), 20.2(\mathrm{C}-3 /$ $\left.\mathrm{C}-5, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 20.8\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $22.6\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $26.7\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 26.8\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 28.1$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \quad \mathrm{SiC}_{5} \mathrm{H}_{9}\right), \quad 28.2 \quad\left(\mathrm{CCH}_{2} \mathrm{C}, \quad \mathrm{SiC}_{5} \mathrm{H}_{9}\right), \quad 47.1$ $\left(\mathrm{NCH}_{3}\right), 49.4\left(\mathrm{SiCH}_{2} \mathrm{O}\right), 59.8\left(\mathrm{C}-2\right.$ or $\left.\mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $60.3\left(\mathrm{C}-2\right.$ or $\left.\mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 62.0\left(\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 128.3$ $\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 130.0\left(\mathrm{C}-4, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 133.0(\mathrm{C}-1$, $\mathrm{SiC}_{6} \mathrm{H}_{5}$), $134.4\left(\mathrm{C}-2 / \mathrm{C}-6, \quad \mathrm{SiC}_{6} \mathrm{H}_{5}\right) .{ }^{29} \mathrm{Si}-\mathrm{NMR}$ (59.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.1$. Anal. Found: C, 52.4; H, 7.4;

N , 3.1. Calc. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{INOSi}\left(M_{\mathrm{r}}=459.5\right)$: C, 52.28; H, 7.46; N, 3.05\%.

3.1.24. (R)-1-\{2-[Cyclopentyl(hydroxymethyl)phenyl-silyl]ethyl\}-1-methylpiperidinium iodide $[(R)-4 b]$

This compound was prepared from $(R)-\mathbf{3 b}(100 \mathrm{mg}$, $315 \mu \mathrm{~mol})$ analogous to the synthesis of rac-4a and isolated in 89% yield as a colorless crystalline solid (128 $\mathrm{mg}, 279 \mu \mathrm{~mol}) ;$ m.p. $160^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac-4b. $[\alpha]_{365}^{20}=5.0, \quad[\alpha]_{405}^{20}=3.7, \quad[\alpha]_{435}^{20}=3.2, \quad[\alpha]_{546}^{20}=2.5$, $[\alpha]_{589}^{20}=2.2(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, $52.4 ; \mathrm{H}$, 7.3; N , 3.1. Calc. for $\mathrm{C}_{20} \mathrm{H}_{34}$ INOSi ($M_{\mathrm{r}}=459.5$): C, 52.28; H, 7.46; N, 3.05\%.
3.1.25. (S)-1-\{2-[Cyclopentyl(hydroxymethyl)phenyl-silyl]ethyl\}-1-methylpiperidinium iodide [(S)-4b]

This compound was prepared from (S)-3b (100 mg , $315 \mu \mathrm{~mol})$ analogous to the synthesis of rac-4a and isolated in 90% yield as a colorless crystalline solid (130 $\mathrm{mg}, 283 \mu \mathrm{~mol}) ; \mathrm{m} . \mathrm{p} .160^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac-4b. $[\alpha]_{365}^{20}=-5.0, \quad[\alpha]_{405}^{20}=-3.7,[\alpha]_{435}^{20}=-3.2, \quad[\alpha]_{546}^{20}=$ $-2.5,[\alpha]_{589}^{20}=-2.2(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 52.4; H, 7.4; N, 3.0. Calc. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{INOSi}\left(M_{\mathrm{r}}=\right.$ 459.5): C, 52.28 ; H, 7.46; N, 3.05%.

3.1.26. rac-1-\{2-[Cyclopentyl(hydroxymethyl)phenyl-germyl]ethyl\}-1-methylpiperidinium iodide (rac-4c)

This compound was prepared from rac-3c (360 mg , $994 \mu \mathrm{~mol}$) analogous to the synthesis of rac-4a and isolated, after crystallization from acetone-water [10:1 (v/v)], in 87% yield as a colorless crystalline solid (436 $\mathrm{mg}, 865 \mu \mathrm{~mol})$; m.p. $152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.1 MHz , CDCl_{3}): $\delta 1.3-2.0\left(\mathrm{~m}, 17 \mathrm{H}, \quad \mathrm{GeCH}_{2} \mathrm{C}, \quad \mathrm{GeCHC}_{2}\right.$, $\left.\mathrm{CCH}_{2} \mathrm{C}\right), 3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.2-3.6(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{CCH}_{2} \mathrm{~N}$), 3.8-4.2 (m, 3H, $\mathrm{GeCH}_{2} \mathrm{O}, \mathrm{OH}$), 7.3-7.5 (m, $5 \mathrm{H}, \mathrm{GeC}_{6} \mathrm{H}_{5}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.0$ $\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $20.1\left(\mathrm{C}-3\right.$ or $\left.\mathrm{C}-5, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $20.7(\mathrm{C}-3$ or $\left.\mathrm{C}-5, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 25.3\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.0\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.1\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 28.98\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{GeC}_{5} \mathrm{H}_{9}\right), 29.03\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right)$, $47.1\left(\mathrm{NCH}_{3}\right), 51.1$ $\left(\mathrm{GeCH}_{2} \mathrm{O}\right)$, $59.7\left(\mathrm{C}-2\right.$ or $\left.\mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $60.1(\mathrm{C}-2$ or $\left.\mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 62.7\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 128.4(\mathrm{C}-3 / \mathrm{C}-5$, $\left.\mathrm{GeC}_{6} \mathrm{H}_{5}\right)$, $129.1\left(\mathrm{C}-4, \quad \mathrm{GeC}_{6} \mathrm{H}_{5}\right)$, $134.1 \quad(\mathrm{C}-2 / \mathrm{C}-6$, $\left.\mathrm{GeC}_{6} \mathrm{H}_{5}\right), 135.8\left(\mathrm{C}-1, \mathrm{GeC}_{6} \mathrm{H}_{5}\right)$. Anal. Found: C, 47.4; H, 7.1; N, 2.7. Calc. for $\mathrm{C}_{20} \mathrm{H}_{34}$ GeINO ($M_{\mathrm{r}}=504.0$): C, 47.66; H, 6.80; N, 2.78\%.

3.1.27. (R)-1-\{2-[Cyclopentyl(hydroxymethyl)phenylgermyl]ethyl $\}$-1-methylpiperidinium iodide $[(R)-4 c]$

This compound was prepared from $(R)-3 c(87.0 \mathrm{mg}$, $240 \mu \mathrm{~mol}$) analogous to the synthesis of rac-4a and isolated in 84% yield as a colorless crystalline solid (102 $\mathrm{mg}, 202 \mu \mathrm{~mol}) ; \mathrm{m} . \mathrm{p} .167^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac-4c.
$[\alpha]_{365}^{20}=4.9, \quad[\alpha]_{405}^{20}=3.1, \quad[\alpha]_{435}^{20}=2.2, \quad[\alpha]_{546}^{20}=0.9$, $[\alpha]_{589}^{20}=0.8(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 47.7; H, 6.9; N, 2.8. Calc. for $\mathrm{C}_{20} \mathrm{H}_{34}$ GeINO ($M_{\mathrm{r}}=504.0$): C, 47.66; H, 6.80; N, 2.78\%.

3.1.28. (S)-1-\{2-[Cyclopentyl(hydroxymethyl)phenyl-germyl]ethyl\}-1-methylpiperidinium iodide [(S)-4c]

This compound was prepared from (S)-3c (47.0 mg , $130 \mu \mathrm{~mol})$ analogous to the synthesis of rac-4a and isolated in 98% yield as a colorless crystalline solid ($64.0 \mathrm{mg}, 127 \mu \mathrm{~mol}$); m.p. $167^{\circ} \mathrm{C}$. The NMR data of the product were identical to those obtained for rac-4c. $[\alpha]_{365}^{20}=-4.9, \quad[\alpha]_{405}^{20}=-3.1, \quad[\alpha]_{435}^{20}=-2.2, \quad[\alpha]_{546}^{20}=$ $-0.9,[\alpha]_{589}^{20}=-0.8(\mathrm{MeOH}, c=1.00)$. Anal. Found: C, 47.9; H, 6.9; N, 2.8. Calc. for $\mathrm{C}_{20} \mathrm{H}_{34}$ GeINO ($M_{\mathrm{r}}=$ 504.0): C, 47.66; H, 6.80; N, 2.78\%.

3.1.29. 2,2-Dicyclopentyl-4-(piperidin-1-yl)butan-1-ol (5a)

This compound was prepared analogous to the synthesis of $\mathrm{rac}-\mathbf{3 a}$ by the treatment of $\mathbf{1 6}(1.06 \mathrm{~g}, 3.16$ mmol) with a suspension of lithium aluminum hydride $(482 \mathrm{mg}, 12.7 \mathrm{mmol})$ in THF $(20 \mathrm{ml})$ and isolated in 97% yield as a colorless solid ($900 \mathrm{mg}, 3.07 \mathrm{mmol}$); m.p. $79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.2-1.7,1.9-$ 2.1, and $2.2-2.6\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{3} \mathrm{CH}, \mathrm{CCH}_{2} \mathrm{~N}\right)$, 3.37 (s, $2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}$), OH resonance not detected. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.2\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $24.82\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 24.87\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 25.5$ $\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 27.0 \quad\left(\mathrm{CCH}_{2} \mathrm{C}, \quad \mathrm{C}_{5} \mathrm{H}_{9}\right), \quad 27.11$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 29.1\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 42.9\left(\mathrm{CCH}_{2} \mathrm{O}\right)$, $44.0\left(\mathrm{C}-1, \quad \mathrm{C}_{5} \mathrm{H}_{9}\right), \quad 54.3\left(\mathrm{C}-2 / \mathrm{C}-6, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 54.5$ $\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $68.1\left(\mathrm{CCH}_{2} \mathrm{O}\right)$. Anal. Found: C, 77.7; $\mathrm{H}, 11.9$; $\mathrm{N}, 4.8$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}\left(M_{\mathrm{r}}=293.5\right)$: C, 77.76; H, 12.02; N, 4.77\%.

3.1.30. 1-(3,3-Dicyclopentyl-4-hydroxybutyl)piperidinium chloride $(\mathbf{5 a} \cdot \mathrm{HCl})$

This compound was prepared from 5a ($200 \mathrm{mg}, 681$ $\mu \mathrm{mol}$) analogous to the synthesis of $\mathrm{rac}-\mathbf{3 a} \cdot \mathrm{HCl}$ and isolated in 97% yield as a colorless crystalline solid (218 $\mathrm{mg}, 661 \mu \mathrm{~mol}$); m.p. $202{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.1 MHz , CDCl_{3}): $\delta 1.2-2.2\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{3} \mathrm{CH}\right), 2.6-2.8$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{~N}\right), 3.1-3.3$ and $3.4-3.6(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{CCH}_{2} \mathrm{~N}, \mathrm{CCH}_{2} \mathrm{O}$), $3.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 11.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.1$ (C-4, $\left.\mathrm{NC}_{5} \mathrm{H}_{10}\right), 22.8\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), 24.68\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{9}\right), 24.69\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 27.3\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 27.5$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 27.6\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 42.3\left(\mathrm{CCH}_{2} \mathrm{O}\right)$, $44.8\left(\mathrm{C}-1, \quad \mathrm{C}_{5} \mathrm{H}_{9}\right), \quad 52.9\left(\mathrm{C}-2 / \mathrm{C}-6, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 54.3$ $\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $66.7\left(\mathrm{CCH}_{2} \mathrm{O}\right)$. Anal. Found: C, 68.8; $\mathrm{H}, 10.8 ; \mathrm{N}, 4.2$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{ClNO}\left(M_{\mathrm{r}}=330.0\right)$: C, 69.16; H, 11.00; N, 4.25\%.

3.1.31. Dicyclopentyl(hydroxymethyl)[2-(piperidin-1yl)ethyllsilane (5b)

This compound was prepared from $37(3.00 \mathrm{~g}, 10.1$ mmol) analogous to the synthesis of $\mathrm{rac}-\mathbf{3 b}$ and isolated in 90% yield as a colorless oily liquid $(2.80 \mathrm{~g}, 9.04$ mmol); b.p. $210{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar}$ (oven temperature of the Kugelrohr distillation apparatus). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.1 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.8-1.9$ (m, 26H, $\mathrm{SiCH}_{2} \mathrm{C}, \mathrm{SiCHC}_{2}$, $\mathrm{CCH}_{2} \mathrm{C}$), 2.2-2.7 (m, 6H, $\mathrm{CCH}_{2} \mathrm{~N}$), 3.31 ($\mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{SiCH}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.2$ $\left(\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 22.2\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 24.2\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $25.2\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 26.8\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 28.4$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \quad \mathrm{SiC}_{5} \mathrm{H}_{9}\right), \quad 28.5 \quad\left(\mathrm{CCH}_{2} \mathrm{C}, \quad \mathrm{SiC}_{5} \mathrm{H}_{9}\right), \quad 50.0$ $\left(\mathrm{SiCH}_{2} \mathrm{O}\right), 54.4\left(\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 54.5\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$. ${ }^{29} \mathrm{Si}-\mathrm{NMR}\left(59.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 2.1$. Anal. Found: C, 69.5; H, 11.1; N, 4.3. Calc. for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{NOSi}\left(M_{\mathrm{r}}=\right.$ 309.6): C, 69.84; H, 11.40; N, 4.52\%.
3.1.32. 1-\{2-[Dicyclopentyl(hydroxymethyl)silyl]ethyl\}piperidinium chloride ($\mathbf{5 b} \cdot \mathrm{HCl}$)

This compound was prepared from 5b ($700 \mathrm{mg}, 2.26$ mmol) analogous to the synthesis of $\mathrm{rac}-\mathbf{3 a} \cdot \mathrm{HCl}$ and isolated, after crystallization from acetone $-\mathrm{Et}_{2} \mathrm{O}$ [diffusion of $\mathrm{Et}_{2} \mathrm{O}$ via the gas phase into a solution of the product in acetone (15 ml) at r.t.], in 93% yield as a colorless crystalline solid ($727 \mathrm{mg}, 2.10 \mathrm{mmol}$); m.p. $165-166{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.9-$ 1.1, 1.2-1.7, 1.7-2.0, and $2.1-2.3$ (m, 26H, SiCH 2 C , $\mathrm{SiCHC}_{2}, \mathrm{CCH}_{2} \mathrm{C}$), 2.4-2.7, 3.1-3.3, and 3.4-3.6 (m, $6 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{~N}$), 2.9 (br s, 1H, OH), 3.55 (s, $2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{O}$), 11.3 (br s, 1H, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $5.8\left(\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 22.0\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 22.3(\mathrm{C}-4$, $\left.\mathrm{NC}_{5} \mathrm{H}_{10}\right), 22.7\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), 26.6\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{SiC}_{5} \mathrm{H}_{9}\right), 26.7\left(\mathrm{CCH}_{2} \mathrm{C}, \quad \mathrm{SiC}_{5} \mathrm{H}_{9}\right), \quad 28.4 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $28.5\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $51.1\left(\mathrm{SiCH}_{2} \mathrm{O}\right), 51.9$ $\left(\mathrm{C}-2 / \mathrm{C}-6, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), 54.7 \quad\left(\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{29} \mathrm{Si}-\mathrm{NMR}$ ($59.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.9$. Anal. Found: C, $62.1 ; \mathrm{H}$, 10.2; N, 4.1. Calc. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{ClNOSi}\left(M_{\mathrm{r}}=346.0\right)$: C, 62.48; H, 10.49; N, 4.06\%.

3.1.33. Dicyclopentyl(hydroxymethyl)[2-(piperidin-1yl)ethyllgermane (5c)

This compound was prepared from $42(10.5 \mathrm{~g}, 30.8$ mmol) analogous to the synthesis of $\mathrm{rac}-\mathbf{3 c}$ and isolated in 88% yield as a colorless oily liquid $(9.55 \mathrm{~g}, 27.0$ mmol); b.p. $152{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300.1 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta \quad 1.0-1.8\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{C}, \mathrm{GeCHC}_{2}\right.$, $\mathrm{CCH}_{2} \mathrm{C}$), 2.1-2.5 (m, $6 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{~N}$), $3.49(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{GeCH}_{2} \mathrm{O}$), 6.4 (br s, $1 \mathrm{H}, \mathrm{OH}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 9.9\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 24.1\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 24.3$ $\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 25.0\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 26.1$ (4C, $\left.\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 29.15\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 29.22$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 50.3\left(\mathrm{GeCH}_{2} \mathrm{O}\right)$, $54.3(\mathrm{C}-2 / \mathrm{C}-6$, $\left.\mathrm{NC}_{5} \mathrm{H}_{10}\right), 55.3\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$. Anal. Found: C, 60.9; H, 9.9; N, 4.2. Calc. for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{GeNO}\left(M_{\mathrm{r}}=354.1\right)$: C, 61.06; H, 9.96; N, 3.96\%.

3.1.34. 1-\{2-[Dicyclopentyl(hydroxymethyl)germyl]ethyl\}piperidinium chloride $(5 c \cdot \mathrm{HCl})$

This compound was prepared from 5c ($453 \mathrm{mg}, 1.28$ mmol) analogous to the synthesis of $\mathrm{rac}-\mathbf{3 a} \cdot \mathrm{HCl}$ and isolated, after crystallization from acetone- $\mathrm{Et}_{2} \mathrm{O}$ [diffusion of $\mathrm{Et}_{2} \mathrm{O}$ via the gas phase into a solution of the product in acetone (10 ml) at r.t.], in 93% yield as a colorless crystalline solid ($465 \mathrm{mg}, 1.19 \mathrm{mmol}$); m.p. $165{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.1-2.2$ and 2.5-2.7 (m, 27H, GeCH ${ }_{2} \mathrm{C}, \mathrm{GeCHC}_{2}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{OH}$), $3.1-3.3$ and $3.4-3.6\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{~N}\right), 3.74(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{GeCH}_{2} \mathrm{O}$); 10.7 (br s, 1H, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75.5 \mathrm{MHz}$, CDCl_{3}): $\delta 5.5\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 22.1\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 22.7$ $\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 24.3 \quad\left(\mathrm{C}-1, \quad \mathrm{GeC}_{5} \mathrm{H}_{9}\right), \quad 26.01$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.05\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 29.2$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 29.3\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 51.76(\mathrm{C}-$ $\left.2 / \mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 51.84\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $55.6\left(\mathrm{GeCH}_{2} \mathrm{O}\right)$. Anal. Found: C, 55.7 H, 9.5; N, 3.7. Calc. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{ClGeNO}\left(M_{\mathrm{r}}=390.6\right): \mathrm{C}$, $55.36 ; \mathrm{H}, 9.29$; N, 3.59\%.

3.1.35. 1-(3,3-Dicyclopentyl-4-hydroxybutyl)-1methylpiperidinium iodide ($\mathbf{6 a}$)

This compound was prepared from 5 a $(200 \mathrm{mg}, 681$ $\mu \mathrm{mol}$) analogous to the synthesis of rac-4a and isolated in 91% yield as a colorless crystalline solid ($269 \mathrm{mg}, 618$ $\mu \mathrm{mol}$); m.p. $146{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ $1.3-2.1\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{3} \mathrm{CH}\right), 3.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 3.3-3.6 (m, 9H, $\left.\mathrm{CCH}_{2} \mathrm{~N}, \mathrm{CCH}_{2} \mathrm{O}, \mathrm{OH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 21.4\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{NC}_{5} \mathrm{H}_{10}\right.$), 22.4 $\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 26.12\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 26.13\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{9}\right), 26.4\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 28.86\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right)$, $29.01\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 43.9\left(\mathrm{CCH}_{2} \mathrm{O}\right), 46.9(\mathrm{C}-1$, $\left.\mathrm{C}_{5} \mathrm{H}_{9}\right), 48.0\left(\mathrm{NCH}_{3}\right), 62.4\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 63.1$ $\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 67.6\left(\mathrm{CCH}_{2} \mathrm{O}\right)$. Anal. Found: C, 55.0; $\mathrm{H}, 8.6$; N, 3.2. Calc. for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{INO}\left(M_{\mathrm{r}}=435.4\right)$: C, 55.17; H, 8.80; N, 3.22\%.

3.1.36. 1-\{2-[Dicyclopentyl(hydroxymethyl)silyl]ethyl\}1 -methylpiperidinium iodide (6b)

This compound was prepared from 5b ($700 \mathrm{mg}, 2.26$ mmol) analogous to the synthesis of rac-4a and isolated in 90% yield as a colorless crystalline solid $(917 \mathrm{mg}$, 2.03 mmol); m.p. $95-96^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.1 MHz , CDCl_{3}): $\delta 0.9-1.2,1.2-1.7$, and $1.7-2.0(\mathrm{~m}, 26 \mathrm{H}$, $\mathrm{SiCH}_{2} \mathrm{C}, \mathrm{SiCHC}_{2}, \mathrm{CCH}_{2} \mathrm{C}$), 2.7 (br s, 1H, OH), 3.18 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 3.58 (s, 2H, $\mathrm{SiCH}_{2} \mathrm{O}$), 3.5-3.7 and 3.7-3.9 $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.3$ $\left(\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 20.3\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 20.9$ (C-4, $\left.\mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $22.2\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $26.72\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $26.75\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 28.5\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, 28.6 $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $47.1\left(\mathrm{NCH}_{3}\right), 49.6\left(\mathrm{SiCH}_{2} \mathrm{O}\right), 60.0$ $\left(\mathrm{C}-2 / \mathrm{C}-6, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 62.3 \quad\left(\mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{29} \mathrm{Si}$-NMR ($59.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.1$. Anal. Found: $\mathrm{C}, 50.3 ; \mathrm{H}$, 8.3; N, 3.1. Calc. for $\mathrm{C}_{19} \mathrm{H}_{38}$ INOSi $\left(M_{\mathrm{r}}=451.5\right): \mathrm{C}$, 50.54; H, 8.48; N, 3.10\%.

3.1.37. 1-\{2-[Dicyclopentyl(hydroxymethyl)germyl]-ethyl\}-1-methylpiperidinium iodide ($\boldsymbol{\sigma c}$)

This compound was prepared from 5c $(1.50 \mathrm{~g}, 4.24$ mmol) analogous to the synthesis of rac-4a and isolated, after crystallization from EtOAc, in 95% yield as a colorless crystalline solid $(2.00 \mathrm{~g}, 4.03 \mathrm{mmol}) ;$ m.p. $93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.1 MHz, [D 6]acetone): $\delta 1.3-2.1$ ($\mathrm{m}, 26 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{C}, \mathrm{GeCHC}_{2}, \mathrm{CCH}_{2} \mathrm{C}$), 3.25 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.5-4.0\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{~N}, \mathrm{GeCH}_{2} \mathrm{O}, \mathrm{OH}\right) .{ }^{13} \mathrm{C}-$ NMR (75.5 MHz , $\left[\mathrm{D}_{6}\right]$ acetone): $\delta 4.2\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, 20.7 (C-3/C-5, $\mathrm{NC}_{5} \mathrm{H}_{10}$), $21.6\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $25.2(\mathrm{C}-1$, $\left.\mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.67\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.72\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{GeC}_{5} \mathrm{H}_{9}\right), 29.84\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right)$, $29.89\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{GeC}_{5} \mathrm{H}_{9}\right), 46.5\left(\mathrm{NCH}_{3}\right), 51.1\left(\mathrm{GeCH}_{2} \mathrm{O}\right), 60.0(\mathrm{C}-2 / \mathrm{C}-6$, $\left.\mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $63.8\left(\mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$. Anal. Found: C, 46.2; $\mathrm{H}, 8.0 ; \mathrm{N}, 2.9$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{GeINO}\left(M_{\mathrm{r}}=496.0\right)$: C, 46.01; H, 7.72; N, 2.82\%.

3.1.38. 2,2-Diphenyl-4-(piperidin-1-yl)butan-1-ol (7a)
 Synthesis as described in Ref. [6].

3.1.39. (Hydroxymethyl)diphenyl[2-(piperidin-1-yl)ethyllsilane (7b)

Synthesis as described in Ref. [7].
3.1.40. (Hydroxymethyl)diphenyl[2-(piperidin-1-yl)ethyllgermane (7c)

Synthesis as described in Ref. [3].

3.1.41. 1-(4-Hydroxy-3,3-diphenylbutyl)piperidinium chloride $(7 a \cdot \mathrm{HCl})$
 Synthesis as described in Ref. [6].

3.1.42. 1-\{2-[(Hydroxymethyl)diphenylsilyl]ethyl\}piperidinium chloride $(\mathbf{7 b} \cdot \mathrm{HCl})$

Synthesis as described in Ref. [7].
3.1.43. 1-\{2-[(Hydroxymethyl)diphenylgermyl]ethyl\}piperidinium chloride $(7 c \cdot \mathrm{HCl})$

Synthesis as described in Ref. [3].

3.1.44. 1-(4-Hydroxy-3,3-diphenylbutyl)-1-methylpiperidinium iodide (8a)
 Synthesis as described in Ref. [6].

3.1.45. 1-\{2-[(Hydroxymethyl)diphenylsilyl]ethyl\}-1methylpiperidinium iodide (8b)

Synthesis as described in Ref. [7].
3.1.46. 1- $\{2-[(H y d r o x y m e t h y l) d i p h e n y l g e r m y l] e t h y l\}-1-$ methylpiperidinium iodide ($\mathbf{8 c}$)

Synthesis as described in Ref. [3].

3.1.47. Phenylacetonitrile (9)

This compound was commercially available (Aldrich).

3.1.48. rac-Cyclopentyl(phenyl)acetonitrile (rac-10)

Freshly distilled $9(62.7 \mathrm{~g}, 535 \mathrm{mmol})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ within 10 min to a stirred suspension of $\mathrm{NaNH}_{2}(21.6 \mathrm{~g}, 554 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$ and the resulting mixture heated under reflux for 2 h . After cooling to $0{ }^{\circ} \mathrm{C}$, cyclopentyl bromide $(79.7 \mathrm{~g}, 535$ mmol) was added and the mixture heated under reflux for 1 h , followed by the addition of water $(250 \mathrm{ml})$ at r.t.. The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue distilled in vacuo (Vigreux column) to give $\mathrm{rac}-10$ in 79% yield as a colorless liquid (78.8 g , 425 mmol); b.p. $84{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar}$. The product crystallized on cooling; m.p. $45-46{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.1 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.2-1.9$ and $2.2-2.3\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{9}\right)$, $3.63\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}\right), 7.2-7.4(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) . \quad{ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(100.6 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta \quad 24.8$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 24.9\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 30.2\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{9}\right), 30.9\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 42.5\left(\mathrm{C}-1, \mathrm{C}_{5} \mathrm{H}_{9}\right.$, or $C C N), 45.2\left(\mathrm{C}-1, \mathrm{C}_{5} \mathrm{H}_{9}\right.$, or $\left.C \mathrm{CN}\right), 120.5(\mathrm{CCN}), 127.6$ $\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{C}_{6} \mathrm{H}_{5}\right), 127.9\left(\mathrm{C}-4, \mathrm{C}_{6} \mathrm{H}_{5}\right), 128.9(\mathrm{C}-3 / \mathrm{C}-5$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 135.9\left(\mathrm{C}-1, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Anal. Found: C, 84.1; H, 8.1; N, 7.6. Calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}\left(M_{\mathrm{r}}=185.3\right)$: C, 84.28; H, 8.16; N, 7.56\%.

3.1.49. rac-2-Cyclopentyl-2-phenyl-4-(piperidin-1-yl)butyronitrile (rac-11)

A stirred mixture of rac-10 (78.8 g, 425 mmol$)$, 1-(2-chloroethyl)piperidinium chloride (78.3 g, 425 $\mathrm{mmol}), \mathrm{NaNH}_{2}(33.2 \mathrm{~g}, 851 \mathrm{mmol})$, and toluene (1 1) was heated until NH_{3} was evolved $\left(60-65{ }^{\circ} \mathrm{C}\right)$ and the temperature was then maintained at $60{ }^{\circ} \mathrm{C}$. After the evolution of NH_{3} was complete, the mixture was stirred for another 2 h at $65{ }^{\circ} \mathrm{C}$ and then heated under reflux for 4 h . After cooling to $0{ }^{\circ} \mathrm{C}$, water (500 ml) was added and the mixture stirred for 5 min . The organic phase was separated and the aqueous layer extracted with toluene $(3 \times 170 \mathrm{ml})$. The combined organic phases were extracted with 2.0 M hydrochloric acid $(3 \times 300 \mathrm{ml})$, and the pH of the combined aqueous solutions was adjusted to $10-12$ by the addition of a 2.0 M aqueous NaOH solution. This mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 400 \mathrm{ml})$, and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue distilled in vacuo to give rac-11 in 85% yield as a colorless oily liquid ($107 \mathrm{~g}, 361 \mathrm{mmol}$); b.p. $148{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.1-2.3 (m, $\left.23 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{CCHC}_{2}, \mathrm{CCH}_{2} \mathrm{~N}\right), 7.1-7.3$ $\left(\mathrm{m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.2$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 24.7\left(\mathrm{CCH}_{2} \mathrm{C}\right), 25.3\left(\mathrm{CCH}_{2} \mathrm{C}\right), 25.8(\mathrm{C}-3 / \mathrm{C}-$ 5, $\left.\quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 29.1 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 29.2 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), 36.4$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 50.3\left(\mathrm{C}-1, \mathrm{C}_{5} \mathrm{H}_{9}\right), 51.2(\mathrm{CCN}), 54.7(\mathrm{C}-2 / \mathrm{C}-6$, $\left.\mathrm{NC}_{5} \mathrm{H}_{10}\right), 55.2\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 121.2(\mathrm{CCN}), 126.0(\mathrm{C}-2 /$
$\left.\mathrm{C}-6, \mathrm{C}_{6} \mathrm{H}_{5}\right), 127.4\left(\mathrm{C}-4, \mathrm{C}_{6} \mathrm{H}_{5}\right), 128.6\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $138.5\left(\mathrm{C}-1, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Anal. Found: C, 80.6; H, 9.8; N, 9.3. Calc. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2}$ ($M_{\mathrm{r}}=296.5$): C, 81.03; H, 9.52; N, 9.45\%.

3.1.50. rac-2-Cyclopentyl-2-phenyl-4-(piperidin-1-yl)butyric acid (rac-12)

A solution of rac-11 ($29.7 \mathrm{~g}, 100 \mathrm{mmol}$) in a mixture of sulfuric acid, AcOH , and water $[1: 1: 1(\mathrm{v} / \mathrm{v} / \mathrm{v})]$ (150 $\mathrm{ml})$ was stirred under reflux for seven days. After the hydrolysis was complete (GC control), the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and the pH adjusted to $5-6$ by the addition of 2.0 M aqueous NaOH solution. The resulting precipitate was isolated by filtration, washed with water ($3 \times 500 \mathrm{ml}$), and then dried in vacuo to give rac-12 in 99% as a colorless crystalline solid (31.2 g , $98.9 \mathrm{mmol})$; m.p. $251^{\circ} \mathrm{C}$. Owing to the insolubility of rac-12 in acetone, MeOH , toluene, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CHCl}_{3}$, $\mathrm{Me}_{2} \mathrm{SO}$, and water, NMR data could not be obtained. Anal. Found: C, 75.9; H, 9.4; N, 4.4. Calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{2}\left(M_{\mathrm{r}}=315.5\right): \mathrm{C}, 76.15 ; \mathrm{H}, 9.27 ; \mathrm{N}, 4.44 \%$.

3.1.51. Ethyl 4-bromobutyrate (13)

This compound was commercially available (Aldrich).

3.1.52. Ethyl 4-(piperidin-1-yl)butyrate (14)

A stirred solution of $\mathbf{1 3}(51.7 \mathrm{~g}, 265 \mathrm{mmol})$ and piperidine ($89.2 \mathrm{~g}, 1.05 \mathrm{~mol}$) in toluene (300 ml) was heated under reflux for 4 h . After cooling to r.t., the resulting precipitate was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$. The filtrate and the wash solutions were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue distilled in vacuo (Vigreux column) to give 14 in 85% yield as a colorless liquid ($45.0 \mathrm{~g}, 226 \mathrm{mmol}$); b.p. $68{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.18\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.3-1.6,1.7-1.8$, and $2.2-2.4\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{CCH}_{2} \mathrm{~N}\right), 4.04(\mathrm{q}$, ${ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 14.1\left(\mathrm{CCH}_{3}\right), 22.1\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 24.3$ $\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 25.9 \quad\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 32.3$ $\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 54.4\left(\mathrm{C}-2 / \mathrm{C}-6, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 58.4$ $\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 60.1\left(\mathrm{CCH}_{2} \mathrm{O}\right), 173.5(\mathrm{C}=\mathrm{O})$. Anal. Found: C, 66.4; H, 10.8; $\mathrm{N}, 7.1$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{2}$ ($M_{\mathrm{r}}=199.3$): C, $66.29 ; \mathrm{H}, 10.62 ; \mathrm{N}, 7.03 \%$.

3.1.53. Ethyl rac-2-cyclopentyl-4-(piperidin-1-yl)butanoate (rac-15)

Compound 14 ($26.8 \mathrm{~g}, 134 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ within 5 min to a stirred solution of lithium diisopropylamide in THF- n-hexane [prepared from a solution of diisopropylamine ($14.3 \mathrm{~g}, 141 \mathrm{mmol}$) in THF (350 ml) and a 1.6 M solution of n-butyllithium ($88.6 \mathrm{ml}, 142 \mathrm{mmol}$ of n-BuLi) in n-hexane]. After the
mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, a solution of cyclopentyl bromide ($21.1 \mathrm{~g}, 142 \mathrm{mmol}$) in HMPTA $(25.4 \mathrm{~g}, 142 \mathrm{mmol})$ was added within 5 min . After the mixture was stirred for 18 h at r.t., $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ and a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (60 ml) was added. The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{ml})$. After drying the combined organic extracts over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure and the residue distilled in vacuo (Vigreux column) to give rac-15 in 27% yield as a colorless liquid $(9.67 \mathrm{~g}, 36.2$ mmol); b.p. $125^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300.1 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.0-2.5\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{3} \mathrm{CH}, \mathrm{CCH}_{2} \mathrm{~N}\right)$, $1.22\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CCH}_{3}\right), 4.0-4.2(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CCH}_{2} \mathrm{O}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.3$ $\left(\mathrm{CCH}_{3}\right), 24.3\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 25.0\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{NC}_{5} \mathrm{H}_{10}\right)$, $25.8\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 28.7\left[\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right], 30.6$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 30.8\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 42.9(\mathrm{C}-1$, $\left.\mathrm{C}_{5} \mathrm{H}_{9}\right), 50.0(\mathrm{CC=O}), 54.6\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 57.5$ $\left[\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right], 60.0\left(\mathrm{CCH}_{2} \mathrm{O}\right), 175.8(\mathrm{C}=\mathrm{O})$. Anal. Found: C, 71.8; H, 10.8; N, 5.1. Calc. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{2}$ $\left(M_{\mathrm{r}}=267.4\right): \mathrm{C}, 71.87 ; \mathrm{H}, 10.93 ; \mathrm{N}, 5.24 \%$.

3.1.54. Ethyl 2,2-dicyclopentyl-4-(piperidin-1-yl)butyrate (16)

This compound was prepared analogous to the synthesis of rac- $\mathbf{1 5}$ from rac- $\mathbf{1 5}(9.57 \mathrm{~g}, 35.8 \mathrm{mmol})$, a solution of lithium diisopropylamide in THF- n-hexane [prepared from a solution of diisopropylamine (3.83 g , $37.8 \mathrm{mmol})$ in THF (80 ml) and a 1.5 M solution of n-butyllithium ($25.2 \mathrm{ml}, 37.8 \mathrm{mmol}$ of $n-\mathrm{BuLi}$) in n hexane], and a solution of cyclopentyl bromide (5.63 g , 37.8 mmol) in HMPTA ($6.77 \mathrm{~g}, 37.8 \mathrm{mmol}$). Compound $\mathbf{1 6}$ was isolated in 19% yield as a colorless liquid ($2.33 \mathrm{~g}, 6.94 \mathrm{mmol}$); b.p. $152{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.21\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$, $\left.\mathrm{CCH}_{3}\right), 1.3-2.7\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{3} \mathrm{CH}, \mathrm{CCH}_{2} \mathrm{~N}\right)$, $4.07\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.3\left(\mathrm{CCH}_{3}\right), 24.4\left(\mathrm{C}-4, \mathrm{NC}_{5} \mathrm{H}_{10}\right) 25.1$ $\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{NC}_{5} \mathrm{H}_{10}\right), \quad 25.5 \quad\left(\mathrm{CCH}_{2} \mathrm{C}, \quad \mathrm{C}_{5} \mathrm{H}_{9}\right), \quad 25.9$ $\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 28.3\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 28.5\left(\mathrm{CCH}_{2} \mathrm{C}\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{9}\right), 30.2\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 45.9\left(\mathrm{C}-1, \mathrm{C}_{5} \mathrm{H}_{9}\right), 52.2$ ($\mathrm{CC}=\mathrm{O}$), $54.8\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{NC}_{5} \mathrm{H}_{10}\right), 56.0\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $59.6\left(\mathrm{CCH}_{2} \mathrm{O}\right), 175.8(\mathrm{C}=\mathrm{O})$. Anal. Found: C, 74.9; H, 11.3; $\mathrm{N}, 4.1$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NO}_{2}\left(M_{\mathrm{r}}=335.5\right)$: C , 75.17; H, 11.11; N, 4.17\%.

3.1.55. (Chloromethyl)trimethoxysilane (17)

Synthesis as described in Ref. [15].

3.1.56. (Chloromethyl)cyclopentyldimethoxysilane (18)

A 1.9 M solution of cyclopentylmagnesium chloride in $\mathrm{Et}_{2} \mathrm{O}\left(225 \mathrm{ml}, 428 \mathrm{mmol}\right.$ of $\left.c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}\right)$ was added dropwise at r.t. within 100 min to a stirred solution of $17(68.3 \mathrm{~g}, 400 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{ml})$. The mixture was stirred at r.t. for 16 h and then heated under reflux
for 6 h . The precipitate was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{ml})$, and the filtrate and wash solutions were combined. The solvent was removed by distillation at atmospheric pressure and n-pentane (300 ml) added to the residue. The resulting precipitate was filtered off, the filtrate concentrated under reduced pressure, and the residue distilled in vacuo (Vigreux column) to give 18 in 67% yield as a colorless liquid ($55.8 \mathrm{~g}, 267 \mathrm{mmol}$); b.p. $65{ }^{\circ} \mathrm{C} / 1 \mathrm{mbar}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $1.1-1.3,1.4-1.7$, and $1.7-1.8\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, 2.81 (s, $\left.2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{Cl}\right), 3.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.2\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 24.9\left(\mathrm{SiCH}_{2} \mathrm{Cl}\right)$, $26.8\left(\mathrm{CCH}_{2} \mathrm{C}\right)$, $27.1\left(\mathrm{CCH}_{2} \mathrm{C}\right)$, $51.2\left(\mathrm{OCH}_{3}\right)$. Anal. Found: C, 45.4; H, 8.3. Calc. for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{ClO}_{2} \mathrm{Si}\left(M_{\mathrm{r}}=\right.$ 208.8): C, 46.03 ; H, 8.21%.

3.1.57. rac-(Chloromethyl)cyclopentyl(methoxy)phenylsilane (rac-19)

A 2.0 M solution of phenylmagnesium chloride in $\mathrm{Et}_{2} \mathrm{O}\left(140 \mathrm{ml}, 280 \mathrm{mmol}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgCl}\right)$ was added dropwise at r.t. within 2 h to a stirred solution of $\mathbf{1 8}$ ($54.4 \mathrm{~g}, 261 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$. The mixture was stirred at r.t. for 14 h and then heated under reflux for 5 h . The precipitate was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{ml})$, and the filtrate and wash solutions were combined. The solvent was removed by distillation at atmospheric pressure and n-pentane (300 ml) added to the residue. The resulting precipitate was filtered off, the filtrate concentrated under reduced pressure, and the residue distilled in vacuo (Vigreux column) to give 19 in 68% yield as a colorless liquid ($44.9 \mathrm{~g}, 176 \mathrm{mmol}$); b.p. $90{ }^{\circ} \mathrm{C} / 0.05 \mathrm{mbar}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.4-2.0\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 3.12\left(\delta_{\mathrm{A}}\right)$ and $3.14\left(\delta_{\mathrm{B}}\right)(\mathrm{AB}$ system, $J_{\mathrm{AB}}=14.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{Cl}$), 3.63 ($\mathrm{s}, 3 \mathrm{H}$, OCH_{3}), 7.3-7.7 (m, 5H, $\mathrm{SiC}_{6} \mathrm{H}_{5}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.1\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 26.83\left(\mathrm{CCH}_{2} \mathrm{C}\right)$ $26.85\left(\mathrm{CCH}_{2} \mathrm{C}\right), 26.9\left(\mathrm{SiCH}_{2} \mathrm{Cl}\right), 27.5\left(2 \mathrm{C}, \mathrm{CCH}_{2} \mathrm{C}\right)$, $52.0\left(\mathrm{OCH}_{3}\right), 128.0\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 130.2(\mathrm{C}-4$, $\left.\mathrm{SiC}_{6} \mathrm{H}_{5}\right), 132.9\left(\mathrm{C}-1, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 134.3\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{SiC}_{6} \mathrm{H}_{5}\right)$. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{ClOSi}\left(M_{\mathrm{r}}=254.8\right)$. For an alternative synthesis of compound rac-19, see Ref. [15].

3.1.58. rac-(Chloromethyl)cyclopentyl(phenyl)vinylsilane (rac-20)

A 1.7 M solution of vinylmagnesium chloride in THF ($115 \mathrm{ml}, 196 \mathrm{mmol}$ of $\mathrm{CH}_{2}=\mathrm{CHMgCl}$) was added dropwise at r.t. within 1.5 h to a stirred solution of rac-19 ($44.2 \mathrm{~g}, 173 \mathrm{mmol}$) in THF (300 ml). After the mixture was stirred at r.t. for 16 h and heated under reflux for 6 h , a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (500 ml) was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$. The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 350 \mathrm{ml})$, and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue distilled in vacuo (Vigreux column) to give
rac-20 in 74% yield as a colorless liquid $(32.0 \mathrm{~g}, 128$ $\mathrm{mmol})$; b.p. $92{ }^{\circ} \mathrm{C} / 0.02 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.1 MHz , CDCl_{3}): $\delta 1.4-2.0\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 3.14(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{SiCH}_{2} \mathrm{Cl}\right), 5.92\left(\delta_{\mathrm{A}}\right), 6.25\left(\delta_{\mathrm{B}}\right)$, and $6.29\left(\delta_{\mathrm{C}}\right)(\mathrm{ABC}$ system, $J_{\mathrm{AB}}=15.0 \mathrm{~Hz}, J_{\mathrm{AC}}=20.6 \mathrm{~Hz}, J_{\mathrm{BC}}=3.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{SiCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}\right), 7.3-7.5$ and $7.5-7.7(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{SiC}_{6} \mathrm{H}_{5}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.1(\mathrm{C}-1$, $\left.\mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $26.9\left(\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $27.0\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.9$ $\left(\mathrm{SiCH}_{2} \mathrm{Cl}\right), 28.1\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.2\left(\mathrm{CCH}_{2} \mathrm{C}\right), 127.9(\mathrm{C}-3 /$ $\left.\mathrm{C}-5, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 129.7\left(\mathrm{C}-4, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 132.0\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right)$, $133.3\left(\mathrm{C}-1, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 135.0\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 136.5$ $\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right) .{ }^{29} \mathrm{Si}-\mathrm{NMR}\left(79.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-10.9$. Anal. Found: C, 67.2; H, 7.9. Calc. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClSi}$ ($M_{\mathrm{r}}=250.8$): C, $67.04 ; \mathrm{H}, 7.63 \%$.

3.1.59. rac-(Acetoxymethyl)cyclopentyl(phenyl)vinylsilane (rac-21)

A mixture of rac-20 ($37.6 \mathrm{~g}, 150 \mathrm{mmol}$) and AcONa ($15.6 \mathrm{~g}, 190 \mathrm{mmol}$) in DMF (200 ml) was stirred under reflux for 5 h . After cooling to r.t., the precipitate was filtered, the solvent of the filtrate was removed under reduced pressure, and the residue distilled in vacuo (Vigreux column) to give rac-21 in 81% yield as a colorless liquid ($33.3 \mathrm{~g}, 121 \mathrm{mmol}$); b.p. $106-108{ }^{\circ} \mathrm{C} /$ $0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.3-1.9$ $\left(\mathrm{m}, 9 \mathrm{H}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 4.15(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{SiCH}_{2} \mathrm{O}\right), 5.87\left(\delta_{\mathrm{A}}\right), 6.20\left(\delta_{\mathrm{B}}\right)$, and $6.22\left(\delta_{\mathrm{C}}\right)(\mathrm{ABC}$ system, $J_{\mathrm{AB}}=15.0 \mathrm{~Hz}, J_{\mathrm{AC}}=20.5 \mathrm{~Hz}, J_{\mathrm{BC}}=3.4 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{SiCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$), 7.3-7.4 and 7.5-7.6 (m, 5 H , $\mathrm{SiC}_{6} \mathrm{H}_{5}$). ${ }^{13} \mathrm{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.9$ $\left(\mathrm{CCH}_{3}\right), 22.3\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 26.9\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.0$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 28.1 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 28.2 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 54.2$ $\left(\mathrm{SiCH}_{2} \mathrm{O}\right), \quad 127.9 \quad\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{SiC}_{6} \mathrm{H}_{5}\right), \quad 129.6$ (C-4, $\left.\mathrm{SiC}_{6} \mathrm{H}_{5}\right), 132.2\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right), 133.6\left(\mathrm{C}-1, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 134.9$ (C-2/C-6, $\mathrm{SiC}_{6} \mathrm{H}_{5}$), 136.1 ($\mathrm{SiCH}=\mathrm{CH}_{2}$), 171.8 (C=O). ${ }^{29} \mathrm{Si}-\mathrm{NMR}\left(79.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta-12.8$. Anal. Found: C, 69.7; H, 8.3. Calc. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}\left(M_{\mathrm{r}}=274.4\right)$: C, 70.03; H, 8.08\%.

3.1.60. rac-(Hydroxymethyl)cyclopentyl(phenyl)vinylsilane (rac-22)

A solution of rac-21 ($33.2 \mathrm{~g}, 121 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(250$ ml) was added dropwise at $-30^{\circ} \mathrm{C}$ within 2 h to a stirred suspension of lithium aluminum hydride $(9.60 \mathrm{~g}$, $253 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{ml})$. The mixture was stirred at $-30{ }^{\circ} \mathrm{C}$ for 1 h and then added in 20 ml portions to ice-cold hydrochloric acid ($18 \%, 11$). The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 400 \mathrm{ml})$, and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue distilled in vacuo (Vigreux column) to give rac-22 in 88% yield as a colorless liquid ($24.7 \mathrm{~g}, 106 \mathrm{mmol}$); b.p. $99{ }^{\circ} \mathrm{C} / 0.005 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $1.1(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.3-2.0\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 3.78(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{O}\right), 5.93\left(\delta_{\mathrm{A}}\right), 6.23\left(\delta_{\mathrm{B}}\right)$, and $6.28\left(\delta_{\mathrm{C}}\right)(\mathrm{ABC}$
system, $J_{\mathrm{AB}}=15.0 \mathrm{~Hz}, J_{\mathrm{AC}}=20.6 \mathrm{~Hz}, J_{\mathrm{BC}}=3.5 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{SiCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$), 7.3-7.4 and 7.5-7.7 (m, 5 H , $\mathrm{SiC}_{6} \mathrm{H}_{5}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.1(\mathrm{C}-1$, $\left.\mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $26.9\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.0\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.2\left(\mathrm{CCH}_{2} \mathrm{C}\right)$, $28.3\left(\mathrm{CCH}_{2} \mathrm{C}\right), 52.6\left(\mathrm{SiCH}_{2} \mathrm{O}\right), 127.0\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{SiC}_{6} \mathrm{H}_{5}\right)$, $129.6\left(\mathrm{C}-4, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 132.7\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right), 134.0(\mathrm{C}-1$, $\left.\mathrm{SiC}_{6} \mathrm{H}_{5}\right), 135.0\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 136.2\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right)$. ${ }^{29} \mathrm{Si}-\mathrm{NMR}\left(79.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta-12.1$. Anal. Found: $\mathrm{C}, 71.8 ; \mathrm{H}, 8.6$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OSi}\left(M_{\mathrm{r}}=232.4\right)$: C , 72.36; H, 8.67\%.

3.1.61. rac-Cyclopentyl(phenyl)[(trimethylsilyloxy)methylvinylsilane (rac-23)

A solution of chlorotrimethylsilane ($36.0 \mathrm{~g}, 331$ mmol) in n-pentane (200 ml) was added dropwise at $-40{ }^{\circ} \mathrm{C}$ within 1 h to a stirred solution of $\mathrm{rac}-22$ (24.5 $\mathrm{g}, 105 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(12.5 \mathrm{~g}, 124 \mathrm{mmol})$ in n-pentane (350 ml). The mixture was warmed to r.t. and then stirred for 16 h . The precipitate was filtered off, the solvent of the filtrate removed under reduced pressure, and the residue distilled in vacuo (Vigreux column) to give $\mathrm{rac}-\mathbf{2 3}$ in 74% yield as a colorless liquid (23.9 g , 78.5 mmol); b.p. $88-90{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.1 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.3-2.0(\mathrm{~m}, 9 \mathrm{H}$, $\mathrm{SiC}_{5} \mathrm{H}_{9}$), $3.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{O}\right), 5.86\left(\delta_{\mathrm{A}}\right), 6.16\left(\delta_{\mathrm{B}}\right)$, and $6.27\left(\delta_{\mathrm{C}}\right)\left(\mathrm{ABC}\right.$ system, $J_{\mathrm{AB}}=15.0 \mathrm{~Hz}, J_{\mathrm{AC}}=20.6 \mathrm{~Hz}$, $J_{\mathrm{BC}}=3.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$), $7.3-7.5$ and $7.5-$ $7.7\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{SiC}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $-0.9\left(\mathrm{SiCH}_{3}\right), 22.3\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 27.0\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.1$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 28.2 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 28.3 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 52.2$ $\left(\mathrm{SiCH}_{2} \mathrm{O}\right), \quad 127.6 \quad\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{SiC}_{6} \mathrm{H}_{5}\right), \quad 129.2 \quad(\mathrm{C}-4$, $\left.\mathrm{SiC}_{6} \mathrm{H}_{5}\right), 133.5\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right), 135.1\left(\mathrm{C}-1, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 135.2$ $\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{SiC}_{6} \mathrm{H}_{5}\right), 135.3\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right) .{ }^{29} \mathrm{Si}-\mathrm{NMR}$ (79.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-13.9\left(\mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $19.2\left(\mathrm{SiCH}_{3}\right)$. Anal. Found: C, 66.4, H, 9.5. Calc. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{OSi}_{2}\left(M_{\mathrm{r}}=\right.$ 304.6): C, 67.04; H, 9.27\%.

3.1.62. Trichloro(chloromethyl)germane (24)

Synthesis as described in Ref. [16].

3.1.63. Dichloro(chloromethyl)cyclopentylgermane (25)

A 3.05 M solution of cyclopentylmagnesium chloride in $\mathrm{Et}_{2} \mathrm{O}\left(119 \mathrm{ml}, 363 \mathrm{mmol}\right.$ of $\left.c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}\right)$ was added dropwise at $-20^{\circ} \mathrm{C}$ within 1.5 h to a stirred solution of $24(83.0 \mathrm{~g}, 363 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{l})$. The mixture was stirred at r.t. for 16 h and then heated under reflux for 4 h . The precipitate was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(5 \times 200 \mathrm{ml})$, and the filtrate and wash solutions were combined. The solvent was removed by distillation at atmospheric pressure and n-pentane (200 ml) added to the residue. The resulting precipitate was filtered off, the filtrate concentrated under reduced pressure, and the residue distilled in vacuo (Vigreux column) to give 25 in 56% yield as a colorless liquid ($53.3 \mathrm{~g}, 203 \mathrm{mmol}$); b.p. $115{ }^{\circ} \mathrm{C} / 12 \mathrm{mbar}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $1.4-2.3\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{Cl}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.9\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.4$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 33.8\left(\mathrm{GeCH}_{2} \mathrm{Cl}\right), 34.9\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right)$. Anal. Found: C, 27.8; H, 4.1. Calc. for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{Ge}\left(M_{\mathrm{r}}=\right.$ 262.1): C, 27.49; H, 4.23\%.

3.1.64. rac-Chloro(chloromethyl)cyclopentyl(phenyl)germane (rac-26)

A 2.23 M solution of phenylmagnesium chloride in THF ($60.1 \mathrm{ml}, 134 \mathrm{mmol}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgCl}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$ within 2 h to a stirred solution of $\mathbf{2 5}$ ($35.0 \mathrm{~g}, 134 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (1 1). After the mixture was stirred at $\mathrm{r} . \mathrm{t}$. for three days and heated under reflux for 4 h , the precipitate was filtered off and the solvent removed by distillation at atmospheric pressure. The residue was distilled in vacuo (Vigreux column) to give rac-26 in 87% yield as a colorless liquid ($35.4 \mathrm{~g}, 117$ mmol); b.p. $114{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.1 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.6-2.2\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 3.46\left(\delta_{\mathrm{A}}\right)$ and 3.49 $\left(\delta_{\mathrm{B}}\right)\left(\mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}}=14.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{Cl}\right), 7.4-$ 7.5 and $7.6-7.8\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{GeC}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.0\left(\mathrm{CCH}_{2} \mathrm{C}\right), 26.1\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.9$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.0\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.9\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 30.2$ $\left(\mathrm{GeCH}_{2} \mathrm{Cl}\right), 128.5\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{GeC}_{6} \mathrm{H}_{5}\right), 130.4 \quad(\mathrm{C}-4$, $\left.\mathrm{GeC}_{6} \mathrm{H}_{5}\right), \quad 133.3\left(\mathrm{C}-1, \quad \mathrm{GeC}_{6} \mathrm{H}_{5}\right), \quad 134.3 \quad(\mathrm{C}-2 / \mathrm{C}-6$, $\mathrm{GeC}_{6} \mathrm{H}_{5}$). Anal. Found: C, 47.3; H, 5.1. Calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{Ge}\left(M_{\mathrm{r}}=303.8\right)$: C, $47.45 ; \mathrm{H}, 5.31 \%$.

3.1.65. rac-(Chloromethyl)cyclopentyl(phenyl)vinylgermane (rac-27)

A 1.7 M solution of vinylmagnesium chloride in THF ($84.7 \mathrm{ml}, 144 \mathrm{mmol}$ of $\mathrm{CH}_{2}=\mathrm{CHMgCl}$) was added dropwise at r.t. within 1.5 h to a stirred solution of rac-26 ($35.0 \mathrm{~g}, 115 \mathrm{mmol}$) in toluene (150 ml) and the mixture heated under reflux for 1 h . After cooling to $0{ }^{\circ} \mathrm{C}$, a half-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (190 ml) was added. The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{ml})$, and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue distilled in vacuo (Vigreux column) to give rac-27 in 81% yield as a colorless liquid ($27.7 \mathrm{~g}, 93.8 \mathrm{mmol}$); b.p. $110{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .^{1} \mathrm{H}-\mathrm{NMR}$ ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.5-2.1\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 3.30$ $\left(\delta_{\mathrm{A}}\right)$ and $3.34\left(\delta_{\mathrm{B}}\right)\left(\mathrm{AB}\right.$ system, $J_{\mathrm{AB}}=12.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{GeCH}_{2} \mathrm{Cl}\right), 5.85\left(\delta_{\mathrm{A}}\right), 6.24\left(\delta_{\mathrm{B}}\right)$, and $6.41\left(\delta_{\mathrm{C}}\right)(\mathrm{ABC}$ system, $J_{\mathrm{AB}}=13.6 \mathrm{~Hz}, J_{\mathrm{AC}}=20.0 \mathrm{~Hz}, J_{\mathrm{BC}}=3.0 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{GeCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}\right), 7.3-7.5$ and $7.5-7.6(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{GeC}_{6} \mathrm{H}_{5}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.1(\mathrm{C}-1$, $\left.\mathrm{GeC}_{5} \mathrm{H}_{9}\right), \quad 26.1 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 26.2 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right) \quad 28.0$ $\left(\mathrm{GeCH}_{2} \mathrm{Cl}\right), 28.8\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.9\left(\mathrm{CCH}_{2} \mathrm{C}\right), 128.1(\mathrm{C}-3 /$ $\left.\mathrm{C}-5, \quad \mathrm{GeC}_{6} \mathrm{H}_{5}\right), \quad 129.0 \quad\left(\mathrm{C}-4, \quad \mathrm{GeC}_{6} \mathrm{H}_{5}\right), \quad 132.9$ $\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right), 134.1 \quad\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right), 134.3 \quad(\mathrm{C}-2 / \mathrm{C}-6$, $\left.\mathrm{GeC}_{6} \mathrm{H}_{5}\right), 135.8\left(\mathrm{C}-1, \mathrm{GeC}_{6} \mathrm{H}_{5}\right)$. Anal. Found: C, 56.6; H, 6.6. Calc. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClGe}\left(M_{\mathrm{r}}=295.4\right)$: C, $56.93 ; \mathrm{H}$, 6.48\%.

3.1.66. rac-(Acetoxymethyl)cyclopentyl(phenyl)vinylgermane (rac-28)

This compound was prepared from rac-27 (27.5 g, 93.1 mmol) analogous to the synthesis of rac-21 and isolated in 93% yield as a colorless liquid $(27.6 \mathrm{~g}, 86.5$ mmol); b.p. $120{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300.1 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.4-2.0\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 1.98(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right), 4.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{O}\right), 5.77\left(\delta_{\mathrm{A}}\right), 6.16\left(\delta_{\mathrm{B}}\right)$, and $6.35\left(\delta_{\mathrm{C}}\right)\left(\mathrm{ABC}\right.$ system, $J_{\mathrm{AB}}=13.6 \mathrm{~Hz}, J_{\mathrm{AC}}=20.0 \mathrm{~Hz}$, $J_{\mathrm{BC}}=3.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{GeCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$), 7.3-7.4 and 7.4$7.5\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{GeC}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $20.8\left(\mathrm{CCH}_{3}\right), 25.2\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.17\left(\mathrm{CCH}_{2} \mathrm{C}\right)$, $26.22\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.8\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.9\left(\mathrm{CCH}_{2} \mathrm{C}\right), 55.6$ $\left(\mathrm{GeCH}_{2} \mathrm{O}\right), \quad 128.0 \quad\left(\mathrm{C}-3 / \mathrm{C}-5, \quad \mathrm{GeC}_{6} \mathrm{H}_{5}\right), 128.8(\mathrm{C}-4$, $\left.\mathrm{GeC}_{6} \mathrm{H}_{5}\right), 133.3\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right), 133.7\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right)$, $134.4\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{GeC}_{6} \mathrm{H}_{5}\right), 136.1\left(\mathrm{C}-1, \mathrm{GeC}_{6} \mathrm{H}_{5}\right), 171.6$ $\left(\mathrm{CCH}_{3}\right)$. Anal. Found: C, 59.9; H, 7.0. Calc. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{GeO}_{2}\left(M_{\mathrm{r}}=319.0\right): \mathrm{C}, 60.25 ; \mathrm{H}, 6.95 \%$.
3.1.67. rac-Cyclopentyl(hydroxymethyl)phenyl(vinyl)germane (rac-29)

This compound was prepared from rac-28 (27.0 g, 84.7 mmol) analogous to the synthesis of rac-22 and isolated in 92% yield as a colorless liquid $(21.6 \mathrm{~g}, 78.0$ mmol); b.p. $107{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300.1 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.4-2.0\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 3.99(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{GeCH}_{2} \mathrm{O}\right), 5.83\left(\delta_{\mathrm{A}}\right), 6.21\left(\delta_{\mathrm{B}}\right)$, and $6.41\left(\delta_{\mathrm{C}}\right)(\mathrm{ABC}$ system, $J_{\mathrm{AB}}=13.6 \mathrm{~Hz}, J_{\mathrm{AC}}=20.0 \mathrm{~Hz}, J_{\mathrm{BC}}=3.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{GeCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}\right), 7.3-7.4$ and $7.5-7.6(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{GeC}_{6} \mathrm{H}_{5}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.8(\mathrm{C}-1$, $\left.\mathrm{GeC}_{5} \mathrm{H}_{9}\right), \quad 26.10\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 26.15 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 28.95$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 29.00\left(\mathrm{CCH}_{2} \mathrm{C}\right), 53.7\left(\mathrm{GeCH}_{2} \mathrm{O}\right), 128.0(\mathrm{C}-3 /$ $\mathrm{C}-5, \quad \mathrm{GeC}_{6} \mathrm{H}_{5}$), $128.7\left(\mathrm{C}-4, \quad \mathrm{GeC}_{6} \mathrm{H}_{5}\right), 133.7$ (2C, $\mathrm{Ge} C \mathrm{H}=\mathrm{CH}_{2}$), $134.4\left(\mathrm{C}-2 / \mathrm{C}-6, \mathrm{GeC}_{6} \mathrm{H}_{5}\right)$, 136.6 (C-1, $\mathrm{GeC}_{6} \mathrm{H}_{5}$). Anal. Found: C, 60.9; H, 7.5. Calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{GeO}\left(M_{\mathrm{r}}=276.9\right)$: C, 60.72; H, 7.28%.

3.1.68. rac-Cyclopentyl(phenyl)[(trimethylsilyloxy)methyl]vinylgermane (rac-30)

This compound was prepared from rac-29 (21.3 g, 76.9 mmol) analogous to the synthesis of rac-23 and isolated in 92% yield as a colorless liquid $(24.7 \mathrm{~g}, 70.8$ mmol); b.p. $91{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300.1 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.08\left(\mathrm{~s}, 9 \mathrm{H}, \quad \mathrm{SiCH}_{3}\right), 1.4-2.0(\mathrm{~m}, 9 \mathrm{H}$, $\left.\mathrm{GeC}_{5} \mathrm{H}_{9}\right), 3.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{O}\right), 5.77\left(\delta_{\mathrm{A}}\right), 6.15\left(\delta_{\mathrm{B}}\right)$, and $6.39\left(\delta_{\mathrm{C}}\right)\left(\mathrm{ABC}\right.$ system, $J_{\mathrm{AB}}=13.6 \mathrm{~Hz}, J_{\mathrm{AC}}=20.0$ $\left.\mathrm{Hz}, J_{\mathrm{BC}}=3.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{GeCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}\right), 7.3-7.4$ and 7.5-7.6 (m, 5H, GeC H_{5}). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta-0.9\left(\mathrm{SiCH}_{3}\right), 25.1\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.28$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 26.33 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 29.0 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 29.1$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 53.6\left(\mathrm{GeCH}_{2} \mathrm{O}\right), 127.8\left(\mathrm{C}-3 / \mathrm{C}-5, \mathrm{GeC}_{6} \mathrm{H}_{5}\right)$, $128.5\left(\mathrm{C}-4, \mathrm{GeC}_{6} \mathrm{H}_{5}\right), 133.1\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right), 134.6(\mathrm{C}-2 /$ C-6, $\left.\quad \mathrm{GeC}_{6} \mathrm{H}_{5}\right), \quad 134.7 \quad\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right), 137.9 \quad(\mathrm{C}-1$, $\mathrm{GeC}_{6} \mathrm{H}_{5}$). Anal. Found: C, 58.8; H, 8.3. Calc. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{GeOSi}\left(M_{\mathrm{r}}=349.1\right)$: C, 58.49 ; H, 8.08%.

3.1.69. Dicyclopentyldimethoxysilane (31)

This compound was commercially available (WackerChemie).

3.1.70. Dicyclopentyl(methoxy)vinylsilane (32)

A 1.7 M solution of vinylmagnesium chloride in THF ($110 \mathrm{ml}, 187 \mathrm{mmol}$ of $\mathrm{CH}_{2}=\mathrm{CHMgCl}$) was added dropwise at r.t. within 1.5 h to a stirred solution of 31 ($40.0 \mathrm{~g}, 175 \mathrm{mmol}$) in THF (300 ml). The mixture was stirred at r.t. for 16 h and then heated under reflux for 6 h . The precipitate was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{ml})$, and the filtrate and wash solutions were combined. The solvent was removed by distillation at atmospheric pressure and n-pentane (300 ml) added to the residue. The resulting precipitate was filtered off, the filtrate concentrated under reduced pressure, and the residue distilled in vacuo (Vigreux column) to give rac-32 in 74% yield as a colorless liquid $(29.0 \mathrm{~g}, 129$ $\mathrm{mmol})$; b.p. $75{ }^{\circ} \mathrm{C} / 0.03 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.1 MHz , CDCl_{3}): $\delta 1.0-1.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SiCHC}_{2}\right), 1.3-1.6$ and $1.7-$ $1.9\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.84\left(\delta_{\mathrm{A}}\right)$, $6.04\left(\delta_{\mathrm{C}}\right)$, and $6.08\left(\delta_{\mathrm{B}}\right)\left(\mathrm{ABC}\right.$ system, $J_{\mathrm{AB}}=15.2 \mathrm{~Hz}$, $\left.J_{\mathrm{AC}}=21.1 \mathrm{~Hz}, J_{\mathrm{BC}}=3.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}\right) .{ }^{13} \mathrm{C}-$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.9\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 26.96$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.00 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.75 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.77$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 51.6\left(\mathrm{OCH}_{3}\right), 133.7 \quad\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right), 134.5$ $\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right) .{ }^{29} \mathrm{Si}-\mathrm{NMR}\left(59.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.56$. Anal. Found: C, 69.6; H, 10.5. Calc. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{OSi}$ ($M_{\mathrm{r}}=224.4$): C, $69.58 ; \mathrm{H}, 10.78 \%$.

3.1.71. Chlorodicyclopentyl(vinyl)silane (33)

A mixture of $32(10.0 \mathrm{~g}, 44.6 \mathrm{mmol})$ and thionyl chloride ($40.0 \mathrm{~g}, 336 \mathrm{mmol}$) was heated under reflux for 6 h . The excess SOCl_{2} was removed under reduced pressure and the residue distilled in vacuo (Vigreux column) to give $\mathbf{3 3}$ in 83% yield as a colorless liquid ($8.50 \mathrm{~g}, 37.1 \mathrm{mmol}$); b.p. $75{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.1 MHz, CDCl_{3}): $\delta 1.2-1.3\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SiCHC}_{2}\right)$, $1.3-1.7$ and $1.7-1.9\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 5.94\left(\delta_{\mathrm{A}}\right), 6.08$ $\left(\delta_{\mathrm{C}}\right)$, and $6.12\left(\delta_{\mathrm{B}}\right)\left(\mathrm{ABC}\right.$ system, $J_{\mathrm{AB}}=14.8 \mathrm{~Hz}, J_{\mathrm{AC}}=$ $\left.20.3 \mathrm{~Hz}, J_{\mathrm{BC}}=3.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 25.6\left(\mathrm{C}-1, \quad \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 26.9$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.66\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.71\left(\mathrm{CCH}_{2} \mathrm{C}\right), 132.5$ $\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right), \quad 135.7 \quad\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right) .{ }^{29} \mathrm{Si}-\mathrm{NMR} \quad(59.6$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 4.88. Anal. Found: C, $62.6 ; \mathrm{H}, 9.1$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{ClSi}\left(M_{\mathrm{r}}=228.8\right)$: C, 62.98; H, 9.25%.

3.1.72. (Chloromethyl)dicyclopentyl(vinyl)silane (34)

A cooled $\left(-78{ }^{\circ} \mathrm{C}\right) 1.6 \mathrm{M}$ solution of n-butyllithium in n-hexane $(28.0 \mathrm{ml}, 44.8 \mathrm{mmol}$ of $n-\mathrm{BuLi})$ was added dropwise at $-75{ }^{\circ} \mathrm{C}$ (internal temperature) within 30 min to a stirred solution of $33(10.0 \mathrm{~g}, 43.7 \mathrm{mmol})$ and bromochloromethane ($5.80 \mathrm{~g}, 44.8 \mathrm{mmol}$) in THF (150 ml) (careful temperature control). After the addition was complete, the reaction mixture was stirred at $-75{ }^{\circ} \mathrm{C}$ for 30 min and then allowed to warm to r.t.
within $15 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and a half-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (75 ml) were added, and the organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 75 \mathrm{ml})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure and the residue distilled in vacuo (Vigreux column). The distillate (b.p. $82-89^{\circ} \mathrm{C} / 0.03 \mathrm{mbar}$) was purified further by column chromatography on silica gel using $\mathrm{Et}_{2} \mathrm{O}-n$-hexane [1:20 (v / v)] as the eluent to give 34 in 73% yield as a colorless liquid ($7.75 \mathrm{~g}, 31.9 \mathrm{mmol}$); b.p. $82-84^{\circ} \mathrm{C} / 0.02$ mbar. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.1-1.3(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{SiCHC}_{2}\right), 1.3-1.7$ and $1.7-1.9\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right)$, $2.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{Cl}\right), 5.78\left(\delta_{\mathrm{A}}\right), 6.05\left(\delta_{\mathrm{C}}\right)$, and 6.08 $\left(\delta_{\mathrm{B}}\right)\left(\mathrm{ABC}\right.$ system, $J_{\mathrm{AB}}=15.1 \mathrm{~Hz}, J_{\mathrm{AC}}=20.7 \mathrm{~Hz}$, $J_{\mathrm{BC}}=3.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.5\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 27.2\left(\mathrm{CCH}_{2} \mathrm{C}\right)$, $27.3\left(\mathrm{CCH}_{2} \mathrm{C}\right), 27.6\left(\mathrm{SiCH}_{2} \mathrm{Cl}\right), 28.65\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.66$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 133.0\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right), 135.3\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right) .{ }^{29} \mathrm{Si}-$ NMR ($59.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-4.3$. Anal. Found: C, 64.4; H, 9.3. Calc. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{ClSi}\left(M_{\mathrm{r}}=242.9\right)$: C , 64.29; H, 9.55%.

3.1.73. (Acetoxymethyl)dicyclopentyl(vinyl)silane (35)

This compound was prepared from $34(20.0 \mathrm{~g}, 82.4$ mmol) analogous to the synthesis of $\mathrm{rac}-21$ and isolated in 87% yield as a colorless liquid ($19.1 \mathrm{~g}, 71.7 \mathrm{mmol}$); b.p. $81{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.0-1.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SiCHC}_{2}\right), 1.3-1.7$ and 1.7-1.9 (m, $16 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}$), $2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 3.92(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{SiCH}_{2} \mathrm{O}\right), 5.77\left(\delta_{\mathrm{A}}\right), 6.03\left(\delta_{\mathrm{C}}\right)$, and $6.05\left(\delta_{\mathrm{B}}\right)(\mathrm{ABC}$ system, $J_{\mathrm{AB}}=15.1 \mathrm{~Hz}, J_{\mathrm{AC}}=20.6 \mathrm{~Hz}, J_{\mathrm{BC}}=3.6 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{SiCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 21.0\left(\mathrm{CCH}_{3}\right), 22.1\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 26.9\left(\mathrm{CCH}_{2} \mathrm{C}\right)$, $28.25\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.31\left(\mathrm{CCH}_{2} \mathrm{C}\right), 53.8\left(\mathrm{SiCH}_{2} \mathrm{O}\right), 132.7$ $\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right), 134.7\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right), 172.0(\mathrm{C}=\mathrm{O}) .{ }^{29} \mathrm{Si}-$ NMR ($59.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-6.3$. Anal. Found: C, 67.8; $\mathrm{H}, 9.5$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}\left(M_{\mathrm{r}}=266.5\right): \mathrm{C}$, 67.62; H, 9.84\%.

3.1.74. Dicyclopentyl(hydroxymethyl)vinylsilane (36)

This compound was prepared from $35(15.0 \mathrm{~g}, 56.3$ mmol) analogous to the synthesis of rac-22 and isolated in 83% yield as a colorless liquid ($10.5 \mathrm{~g}, 46.8 \mathrm{mmol}$); b.p. $86{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.0-1.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SiCHC}_{2}\right), 1.3-1.7$ and 1.7-1.9 (m, $16 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}$), $3.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{O}\right), 5.82\left(\delta_{\mathrm{A}}\right), 6.07$ $\left(\delta_{\mathrm{C}}\right)$, and $6.09\left(\delta_{\mathrm{B}}\right)\left(\mathrm{ABC}\right.$ system, $J_{\mathrm{AB}}=15.0 \mathrm{~Hz}, J_{\mathrm{AC}}=$ $20.8 \mathrm{~Hz}, J_{\mathrm{BC}}=3.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.0\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 26.86$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 26.89 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 28.4 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 28.5$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 52.2\left(\mathrm{SiCH}_{2} \mathrm{O}\right), 133.3\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right), 134.8$ $\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right) .{ }^{29} \mathrm{Si}-\mathrm{NMR}\left(59.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.8$. Anal. Found: C, 69.4; H, 10.3. Calc. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{OSi}$ $\left(M_{\mathrm{r}}=224.4\right): \mathrm{C}, 69.58 ; \mathrm{H}, 10.78 \%$.

3.1.75. Dicyclopentyl[(trimethylsilyloxy)methyl]vinyl-

 silane (37)This compound was prepared from $36(11.5 \mathrm{~g}, 51.2$ mmol) analogous to the synthesis of $\mathrm{rac}-\mathbf{2 3}$ and isolated in 88% yield as a colorless liquid ($13.4 \mathrm{~g}, 45.2 \mathrm{mmol}$); b.p. $80-82{ }^{\circ} \mathrm{C} / 0.04 \mathrm{mbar}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300.1 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.0-1.2(\mathrm{~m}, 2 \mathrm{H}$, SiCHC_{2}), 1.3-1.7 and 1.7-1.9 (m, 16H, $\left.\mathrm{CCH}_{2} \mathrm{C}\right), 3.42$ (s, $2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{O}$), $5.75\left(\delta_{\mathrm{A}}\right), 6.01\left(\delta_{\mathrm{B}}\right)$, and $6.05\left(\delta_{\mathrm{C}}\right)$ (ABC system, $J_{\mathrm{AB}}=15.0 \mathrm{~Hz}, J_{\mathrm{AC}}=20.7 \mathrm{~Hz}, J_{\mathrm{BC}}=3.9$ $\mathrm{Hz}, \quad 3 \mathrm{H}, \quad \mathrm{SiCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR} \quad(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta-0.9\left(\mathrm{SiCH}_{3}\right), 22.2\left(\mathrm{C}-1, \mathrm{SiC}_{5} \mathrm{H}_{9}\right), 26.96$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 26.98 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 28.3 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.4$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 51.3\left(\mathrm{SiCH}_{2} \mathrm{O}\right), 133.7\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right), 134.3$ $\left(\mathrm{SiCH}=\mathrm{CH}_{2}\right) .{ }^{29} \mathrm{Si}-\mathrm{NMR}\left(59.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-7.0$ $\left(\mathrm{SiC}_{5} \mathrm{H}_{9}\right)$, $18.5\left(\mathrm{SiCH}_{3}\right)$. Anal. Found: C, 64.5; H, 10.4. Calc. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{OSi}_{2}\left(M_{\mathrm{r}}=296.6\right)$: C, $64.79 ; \mathrm{H}, 10.87 \%$.

3.1.76. Chloro(chloromethyl)dicyclopentylgermane (38)

This compound was prepared from $25(18.3 \mathrm{~g}, 69.8$ mmol) by treatment with a 1.7 M solution of cyclopentylmagnesium chloride in THF ($41.1 \mathrm{ml}, 69.9$ mmol of $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}$) analogous to the synthesis of rac-26 and isolated in 83% yield as a colorless liquid $(17.2 \mathrm{~g}, 58.1 \mathrm{mmol})$; b.p. $100{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.4-2.1\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right.$), $3.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{Cl}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 25.9\left(\mathrm{CCH}_{2} \mathrm{C}\right), 26.2\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.2\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.3$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), 28.8\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 29.4\left(\mathrm{GeCH}_{2} \mathrm{Cl}\right)$. Anal. Found: C, 44.5; H, 6.7. Calc. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{Ge}\left(M_{\mathrm{r}}=\right.$ 295.8): C, 44.67 ; H, 6.82%.

3.1.77. (Chloromethyl)dicyclopentyl(vinyl)germane (39)

This compound was prepared from $38(16.9 \mathrm{~g}, 57.1$ mmol) analogous to the synthesis of $\mathrm{rac}-27$ and isolated in 84% yield as a colorless liquid ($13.8 \mathrm{~g}, 48.0 \mathrm{mmol}$); b.p. $100{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.3-2.0\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 3.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{Cl}\right)$, $5.68\left(\delta_{\mathrm{A}}\right), 6.05\left(\delta_{\mathrm{B}}\right)$, and $6.18\left(\delta_{\mathrm{C}}\right)\left(\mathrm{ABC}\right.$ system, $J_{\mathrm{AB}}=$ $13.6 \mathrm{~Hz}, \quad J_{\mathrm{AC}}=20.0 \mathrm{~Hz}, \quad J_{\mathrm{BC}}=3.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{GeCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $24.7\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.15\left(\mathrm{CCH}_{2} \mathrm{C}\right), 26.23\left(\mathrm{CCH}_{2} \mathrm{C}\right)$, $27.6\left(\mathrm{GeCH}_{2} \mathrm{Cl}\right), 29.1\left(\mathrm{CCH}_{2} \mathrm{C}\right), 132.7\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right)$, $134.0\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right)$. Anal. Found: C, 54.2; H, 8.0. Calc. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{ClGe}$ ($M_{\mathrm{r}}=287.4$): C, $54.33 ; \mathrm{H}, 8.07 \%$.
3.1.78. (Acetoxymethyl)dicyclopentyl(vinyl)germane (40)

This compound was prepared from $39(13.3 \mathrm{~g}, 46.3$ mmol) analogous to the synthesis of $\mathrm{rac}-\mathbf{2 1}$ and isolated in 93% yield as a colorless liquid ($13.4 \mathrm{~g}, 43.1 \mathrm{mmol}$); b.p. $109{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.2-1.9\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 4.09$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{O}\right), 5.63\left(\delta_{\mathrm{A}}\right), 5.98\left(\delta_{\mathrm{B}}\right)$, and $6.13\left(\delta_{\mathrm{C}}\right)$ (ABC system, $J_{\mathrm{AB}}=13.6 \mathrm{~Hz}, J_{\mathrm{AC}}=20.0 \mathrm{~Hz}, J_{\mathrm{BC}}=3.8$ $\mathrm{Hz}, 3 \mathrm{H}, \quad \mathrm{GeCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$). ${ }^{13} \mathrm{C}$-NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 20.8\left(\mathrm{CCH}_{3}\right), 24.6\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.2$
$\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 29.0 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 29.1 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 54.9$ $\left(\mathrm{GeCH}_{2} \mathrm{O}\right), 132.4\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right)$, $134.1\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right)$, $171.7(\mathrm{C}=\mathrm{O})$. Anal. Found: C, 57.8; H, 8.5. Calc. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{GeO}_{2}\left(M_{\mathrm{r}}=311.0\right): \mathrm{C}, 57.93 ; \mathrm{H}, 8.43 \%$.

3.1.79. Dicyclopentyl(hydroxymethyl)vinylgermane (41)

This compound was prepared from 40 ($13.0 \mathrm{~g}, 41.8$ $\mathbf{m m o l}$) analogous to the synthesis of rac-22 and isolated in 88% yield as a colorless liquid $(9.91 \mathrm{~g}, 36.8 \mathrm{mmol})$; b.p. $112{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.1-2.0\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 3.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{O}\right)$, $5.69\left(\delta_{\mathrm{A}}\right), 6.05\left(\delta_{\mathrm{B}}\right)$, and $6.18\left(\delta_{\mathrm{C}}\right)\left(\mathrm{ABC}\right.$ system, $J_{\mathrm{AB}}=$ $13.6 \mathrm{~Hz}, \quad J_{\mathrm{AC}}=20.0 \mathrm{~Hz}, \quad J_{\mathrm{BC}}=3.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{GeCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $24.3\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.16\left(\mathrm{CCH}_{2} \mathrm{C}\right), 26.18\left(\mathrm{CCH}_{2} \mathrm{C}\right)$, $29.23\left(\mathrm{CCH}_{2} \mathrm{C}\right), 29.27\left(\mathrm{CCH}_{2} \mathrm{C}\right), 53.2\left(\mathrm{GeCH}_{2} \mathrm{O}\right), 132.7$ $\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right), 134.7\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right)$. Anal. Found: C , 57.8; $\mathrm{H}, 8.9$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{GeO}\left(M_{\mathrm{r}}=268.9\right)$: C, 58.06; H, 8.99\%.

3.1.80. Dicyclopentyl[(trimethylsilyloxy)methyl]vinylgermane (42)

This compound was prepared from $41(9.50 \mathrm{~g}, 35.3$ $\mathbf{m m o l}$) analogous to the synthesis of rac-23 and isolated in 94% yield as a colorless liquid ($11.3 \mathrm{~g}, 33.1 \mathrm{mmol}$); b.p. $81{ }^{\circ} \mathrm{C} / 0.01 \mathrm{mbar} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 0.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.2-1.9\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 3.68$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{GeCH}_{2} \mathrm{O}\right), 5.65\left(\delta_{\mathrm{A}}\right), 6.00\left(\delta_{\mathrm{B}}\right)$, and $6.20\left(\delta_{\mathrm{C}}\right)$ $\left(\mathrm{ABC}\right.$ system, $J_{\mathrm{AB}}=14.0 \mathrm{~Hz}, J_{\mathrm{AC}}=20.0 \mathrm{~Hz}, J_{\mathrm{BC}}=3.8$ $\mathrm{Hz}, \quad 3 \mathrm{H}, \quad \mathrm{GeCH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR} \quad(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta-0.9\left(\mathrm{SiCH}_{3}\right), 24.6\left(\mathrm{C}-1, \mathrm{GeC}_{5} \mathrm{H}_{9}\right), 26.4$ $\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 29.2 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 29.3 \quad\left(\mathrm{CCH}_{2} \mathrm{C}\right), \quad 52.6$ $\left(\mathrm{GeCH}_{2} \mathrm{O}\right)$, $131.7\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right)$, $135.9\left(\mathrm{GeCH}=\mathrm{CH}_{2}\right)$. Anal. Found: C, 56.1; H, 9.4. Calc. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{GeOSi}$ $\left(M_{\mathrm{r}}=341.1\right): \mathrm{C}, 56.34 ; \mathrm{H}, 9.46 \%$.

3.2. Single-crystal X-ray diffraction studies

Suitable single crystals of $2(S) \mathbf{- 3 a} \cdot(R, R)$-HOOC-$\mathrm{CHR}-\mathrm{CHR}-\mathrm{COOH}(\mathrm{R}=\mathrm{O}-\mathrm{CO}-\mathrm{Ph}),(R)-\mathbf{4 b}$, and $(R)-$ 4 c were obtained by crystallization from solutions in acetone at $20{ }^{\circ} \mathrm{C}$. The crystals were mounted in inert oil (perfluoroalkyl ether, ABCR) on a glass fiber and then transferred to the cold nitrogen gas stream of the diffractometer $\quad[2(S)-\mathbf{3 a} \cdot(R, R)$-HOOC-CHR-CHRCOOH ($\mathrm{R}=\mathrm{O}-\mathrm{CO}-\mathrm{Ph}$), Stoe-Huber-Siemens CCD; $(R)-\mathbf{4 b}$ and $(R)-\mathbf{4 c}$, Stoe IPDS; graphite-monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $\left.(\lambda=0.71073 \AA)\right]$. The structures were solved using direct methods [17,18]. All non-hydrogen atoms were refined anisotropically [19]. A riding model was employed in the refinement of the hydrogen atoms.

3.3. Determination of the enantiomeric purities

The enantiomeric purities of the (R) - and (S)-enan-
tiomers of $\mathbf{3 a}-\mathbf{c}$ were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ studies using the chiral solvating agent (R)-(-)-2,2,2-trifluoro-1-(9-anthryl)ethanol [(-)-TFAE); Aldrich]. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded at $22{ }^{\circ} \mathrm{C}$ on a Bruker AMX-400 (400.1 MHz) or Bruker DRX-300-NMR spectrometer (300.1 MHz). The compositions of the samples used for the NMR experiments were as follows: (a) 3a, $55 \mu \mathrm{~mol}$; (-)-TFAE, $110 \mu \mathrm{~mol} ; \mathrm{C}_{6} \mathrm{D}_{6}, 0.5$ ml. (b) 3b, $57 \mu \mathrm{~mol}$; (-)-TFAE, $170 \mu \mathrm{~mol} ; \mathrm{CDCl}_{3}, 0.5$ ml . (c) 3c, $55 \mu \mathrm{~mol}$; (-)-TFAE, $110 \mu \mathrm{~mol} ; \mathrm{CDCl}_{3}, 0.5$ ml .

3.4. ORD studies

The ORD spectra of $\mathbf{3 a}-\mathbf{c}, \mathbf{3 a}-\mathbf{c} \cdot \mathrm{HCl}$, and $\mathbf{4 a}-\mathbf{c}$ were measured at $20{ }^{\circ} \mathrm{C}$ with a JASCO spectropolarimeter, Model J-710; $\mathrm{CH}_{3} \mathrm{OH}$ (purified by drying over Mg and subsequent distillation) or CHCl_{3} [purified by dynamic drying over an $\mathrm{Al}_{2} \mathrm{O}_{3}$ column (50 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Merck, 1077) per 100 ml of CHCl_{3}) and subsequent distillation] served as solvents. The concentrations of the samples were $10 \mathrm{mg} \mathrm{ml}^{-1}$.

3.5. Pharmacological studies

Radioligand binding studies were performed according to the methods outlined in the literature [20,21]. Briefly, $\left[{ }^{3} \mathrm{H}\right]$ NMS ($80-85 \mathrm{Ci} \mathrm{mmol}{ }^{-1}$; Amersham International, Bucks, England) binding to membranes of CHO-K1 cells stably transfected with human $\mathrm{M}_{1}-\mathrm{M}_{5}$ receptors was measured in a buffer containing 20 mM HEPES (pH 7.4) enriched with 100 mM NaCl and 10 $\mathrm{mM} \mathrm{MgCl}_{2}$. Final membrane protein concentrations were $\left(\mu \mathrm{g} \mathrm{ml}^{-1}\right): \mathrm{M}_{1}, 2 ; \mathrm{M}_{2}, 6 ; \mathrm{M}_{3}, 2 ; \mathrm{M}_{4}, 2 ; \mathrm{M}_{5}, 5$. The incubation of tracer (0.2 nM) and different concentrations of competitors ($\mathbf{3 a}-\mathbf{c}, \mathbf{4 a}-\mathbf{c}, \mathbf{5 a}-\mathbf{c}, \mathbf{6 a}-\mathbf{c}, \mathbf{7 a}-\mathbf{c}$, and $8 \mathbf{a}-\mathbf{c}$) was 2 h at $25^{\circ} \mathrm{C}$ and terminated by filtration over Whatman GF/B filters presoaked in 0.5% polyethylenimine ($1-2 \mathrm{~h}$) using a Brandel cell harvester. Non-specific binding was measured in the presence of 1 $\mu \mathrm{M}$ atropine. Previously estimated $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS} K_{\mathrm{D}}$ values, obtained in saturation experiments, were $0.19\left(\mathrm{M}_{1}\right)$, $0.33\left(\mathrm{M}_{2}\right), 0.17\left(\mathrm{M}_{3}\right), 0.10\left(\mathrm{M}_{4}\right)$, and $0.48 \mathrm{nM}\left(\mathrm{M}_{5}\right)$.

Data of the binding experiments were analyzed by a non-linear, iterative curve fitting procedure (GraphPad Software, San Diego, CA, USA). K_{i} values of compounds $\mathbf{3 a}-\mathbf{c}, \mathbf{4 a}-\mathbf{c}, 5 \mathbf{a}-\mathbf{c}, \mathbf{6 a}-\mathbf{c}, 7 \mathbf{a}-\mathbf{c}, \mathbf{8 a}-\mathbf{c}$ were calculated from IC_{50} values obtained from competition curves using the Cheng-Prusoff equation [22]. All data are presented as arithmetic means \pm SD of at least three experiments performed in duplicate. Differences between mean values were tested for statistical significance by Student's t test; $P<0.05$ was accepted as being significant.

4. Supplementary material

Crystallographic data for structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 166211, 166212, 166213 for compounds $[2(S)-\mathbf{3 a} \cdot(R, R)$-HOOC-CHR-CHR-$\mathrm{COOH}(\mathrm{R}=\mathrm{O}-\mathrm{CO}-\mathrm{Ph}]$, and $[(R)-\mathbf{4 b}],[(R)-4 \mathrm{c}]$, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: + 44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

This work was supported by the Volkswagen-Stiftung (R.T.), the Fonds der Chemischen Industrie (G.L., R.T.), and the Deutsche Forschungsgemeinschaft (G.L.).

References

[1] R. Tacke, D. Reichel, M. Kropfgans, P.G. Jones, E. Mutschler, J. Gross, X. Hou, M. Waelbroeck, G. Lambrecht, Organometallics 14 (1995) 251.
[2] R. Tacke, D. Reichel, K. Günther, S. Merget, Z. Naturforsch. 50b (1995) 568.
[3] R. Tacke, D. Reichel, P.G. Jones, X. Hou, M. Waelbroeck, J. Gross, E. Mutschler, G. Lambrecht, J. Organomet. Chem. 521 (1996) 305.
[4] E. Mutschler, H.A. Ensinger, J. Gross, A. Leis, K. Mendla, U. Moser, O. Pfaff, D. Reichel, K. Rühlmann, R. Tacke, M. Waelbroeck, J. Wehrle, G. Lambrecht, in: D. Giardinà, A. Piergentili, M. Pigini (Eds.), Perspectives in Receptor Research, Elsevier, Amsterdam, 1996, pp. 51-65.
[5] M.P. Caulfield, N.J.M. Birdsall, Pharmacol. Rev. 50 (1998) 279.
[6] A. Leis, PhD Thesis, Technische Universität Dresden, 1994.
[7] R. Tacke, M. Kropfgans, A. Tafel, F. Wiesenberger, W.S. Sheldrick, E. Mutschler, H. Egerer, N. Rettenmayr, J. Gross, M. Waelbroeck, G. Lambrecht, Z. Naturforsch. 49b (1994) 898.
[8] Recent short review: R. Tacke, T. Heinrich, T. Kornek, M. Merget, S.A. Wagner, J. Gross, C. Keim, G. Lambrecht, E. Mutschler, T. Beckers, M. Bernd, T. Reissmann, Phosphorus, Sulfur Silicon 150-151 (1999) 69.
[9] Recent original papers: (a) R. Tacke, M. Merget, R. Bertermann, M. Bernd, T. Beckers, T. Reissmann, Organometallics 19 (2000) 3486; (b) M. Merget, K. Günther, M. Bernd, E. Günther, R. Tacke, J. Organomet. Chem. 628 (2001) 183.
[10] Attempts to prepare 5a analogously for the synthesis of rac-3a (via twofold deprotonation of acetonitrile with NaNH_{2} and subsequent alkylation with cyclopentyl bromide) failed.
[11] $\mathrm{El}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}$ torsion angles: $2(S)-\mathbf{3 a} \cdot(R, R)-\mathrm{HOOC}-$ CHR-CHR-COOH ($\mathrm{R}=\mathrm{O}-\mathrm{CO}-\mathrm{Ph}$), $-154.2(2)^{\circ}$ (cation 1) and $-174.4(2)^{\circ}($ cation 2$) ;(R)-4 b, \quad-165.2(3)^{\circ} \quad($ cation 1) and $-166.9(3)^{\circ}($ cation 2$) ; \quad(R)-4 \mathbf{c}, \quad-166.7(3)^{\circ} \quad($ cation 1) and $-166.5(3)^{\circ}$ (cation 2).
[12] All experiments described in Section 2.4 have been repeated leading to reproducible results. Thus, an exchange of the samples can be definitely excluded.
[13] M. Waelbroeck, J. Camus, M. Tastenoy, G. Lambrecht, E. Mutschler, R. Tacke, J. Christophe, Eur. J. Pharmacol. Mol. Pharm. Sect. 189 (1990) 135.
[14] M. Waelbroeck, J. Camus, M. Tastenoy, E. Mutschler, C. Strohmann, R. Tacke, G. Lambrecht, J. Christophe, Chirality 3 (1991) 118.
[15] R. Tacke, J. Pikies, H. Linoh, R. Rohr-Aehle, S. Gönne, Liebigs Ann. Chem. (1987) 51.
[16] R. Tacke, B. Becker, J. Organomet. Chem. 354 (1988) 147.
[17] G.M. Sheldrick, SHELXs-97, University of Göttingen, Göttingen, Germany, 1997.
[18] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467.
[19] G.M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen, Germany, 1997.
[20] F. Dörje, J. Wess, G. Lambrecht, R. Tacke, E. Mutschler, M.R. Brann, J. Pharmacol. Exp. Ther. 256 (1991) 727.
[21] M. Waelbroeck, S. Lazareno, O. Pfaff, T. Friebe, M. Tastenoy, E. Mutschler, G. Lambrecht, Br. J. Pharmacol. 119 (1996) 1319.
[22] Y. Cheng, W.H. Prusoff, Biochem. Pharmacol. 22 (1973) 3099.

[^0]: * Corresponding author. Tel.: + 49-931-888-5250; fax: + 49-931-888-4609.

 E-mail address: r.tacke@mail.uni-wuerzburg.de (R. Tacke).

